351
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Donor-matched comparison of chondrogenic progenitors resident in human infrapatellar fat pad, synovium, and periosteum - implications for cartilage repair

ORCID Icon, , , , , , & ORCID Icon show all
Pages 597-610 | Received 25 Oct 2018, Accepted 04 Apr 2019, Published online: 14 May 2019

References

  • Chu CR, Rodeo S, Bhutani N, Goodrich LR, Huard J, Irrgang J, LaPrade RF, Lattermann C, Lu Y, Mandelbaum B, Mao J, McIntyre L, Mishra A, Muschler GF, Piuzzi NS, Potter H, Spindler K, Tokish JM, Tuan R, Zaslav K, Maloney W. Optimizing clinical use of biologics in orthopaedic surgery: consensus recommendations from the 2018 AAOS/NIH U-13 conference. J Am Acad Orthop Surg. 2019; 27(2):e50–e63. doi:10.5435/JAAOS-D-18-00305.
  • Mantripragada VP, Bova WA, Boehm C, Piuzzi NS, Obuchowski NA, Midura RJ, Muschler GF. Progenitor cells from different zones of human cartilage and their correlation with histopathological osteoarthritis progression. J Orthop Res. 2018; 36(3):1728–1738. doi:10.1002/jor.23829.
  • Piuzzi NS, Dominici M, Long M, Pascual-Garrido C, Rodeo S, Huard J, Guicheux J, McFarland R, Goodrich LR, Maddens S, Robey PG, Bauer TW, Barrett J, Barry F, Karli D, Chu CR, Weiss DJ, Martin I, Jorgensen C, Muschler GF Proceedings of the signature series symposium “Cellular therapies for orthopaedics and musculoskeletal disease proven and unproven therapies-promise, facts and fantasy,” international society for cellular therapy, Montreal, Canada, May 2, 2018. Cytotherapy. 2018; 20(11):1381–1400. doi:10.1016/j.jcyt.2018.09.001.
  • Mantripragada VP, Bova WA, Boehm C, Piuzzi NS, Obuchowski NA, Midura RJ, Muschler GF. Primary cells isolated from human knee cartilage reveal decreased prevalence of progenitor cells but comparable biological potential during osteoarthritic disease progression. J Bone Jt Surg. 2018;(100):1771–1780. doi:10.2106/JBJS.18.00005.
  • Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A; International Society for Cellular Therapy. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy. 2005;7(5):393–395. doi:10.1080/14653240500319234.
  • Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012; 10(6):709–716. doi:10.1016/j.stem.2012.05.015.
  • D’souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med. 2015; 13(1):186. doi:10.1186/s12916-015-0426-0.
  • Phinney DG. Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle. 2007; 6(23):2884–2889. doi:10.4161/cc.6.23.5095.
  • Bianco P, Robey PG. Skeletal stem cells. Development. 2015; 142(6):1023–1027. doi:10.1242/dev.102210.
  • Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011; 9(1):11–15. doi:10.1016/j.stem.2011.06.008.
  • Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res. 2011; 30(1):1–20. doi:10.1186/1756-9966-30-9.
  • Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004 [accessed 2017 March 29];86-A(7):1541–1558. http://www.ncbi.nlm.nih.gov/pubmed/15252108.
  • Muschler GF, Midura RJ, Nakamoto C. Practical modeling concepts for connective tissue stem cell and progenitor compartment kinetics. J Biomed Biotechnol. 2003;2003(3):170–193. doi:10.1155/S1110724303209165.
  • Muschler GF, Midura RJ. Connective tissue progenitors: practical concepts for clinical applications. Clin Orthop Relat Res. 2002 [accessed 2017 Mar 29];395:66–80. http://www.ncbi.nlm.nih.gov/pubmed/11937867
  • ASTM F2944-12 standard test method for automated colony forming unit (CFU) assays—image acquisition and analysis method for enumerating and characterizing cells and colonies in culture. West Conshohocken (PA): ASTM International. 2012. doi:10.1520/F2944.
  • Muschler GF, Midura RJ, Nakamoto C. Practical modeling concepts for connective tissue stem cell and progenitor compartment kinetics. J Biomed Biotechnol. 2003; 2003(3):170–193. doi:10.1155/S1110724303209165.
  • Koh YG, Jo SB, Kwon OR, Suh DS, Lee SW, Park SH, Choi YJ. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthrosc - J Arthrosc Relat Surg. 2013; 29(4):748–755. doi:10.1016/j.arthro.2012.11.017.
  • Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012; 19(6):902–907. doi:10.1016/j.knee.2012.04.001.
  • Akgun I, Unlu MC, Erdal OA, Ogut T, Erturk M, Ovali E, Kantarci F, Caliskan G, Akgun Y. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg. 2015; 135(2):251–263. doi:10.1007/s00402-014-2136-z.
  • Sekiya I, Muneta T, Horie M, Koga H. Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res. 2015; 473(7):2316–2326. doi:10.1007/s11999-015-4324-8.
  • Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. J Orthop Transl. 2017;9:76–88. doi:10.1016/j.jot.2017.03.005.
  • Ball MD, Bonzani IC, Bovis MJ, Williams A, Stevens MM. Human periosteum is a source of cells for orthopaedic tissue engineering: A pilot study. Clin Orthop Relat Res. 2011; 469(11):3085–3093. doi:10.1007/s11999-011-1895-x.
  • Vozzi G, Lucarini G, Dicarlo M, Andreoni C, Salvolini E, Ferretti C, Mattioli-Belmonte M. In vitro lifespan and senescent behaviour of human periosteal derived stem cells. Bone. 2016;88:1–12. doi:10.1016/j.bone.2016.04.013.
  • Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005; 52(8):2521–2529. doi:10.1002/art.21212.
  • Ogata Y, Mabuchi Y, Yoshida M, Suto EG, Suzuki N, Muneta T, Sekiya I, Akazawa C. Purified human synovium mesenchymal stem cells as a good resource for cartilage regeneration. PLoS One. 2015; 10(6):5–9. doi:10.1371/journal.pone.0129096.
  • Kubosch EJ, Heidt E, Niemeyer P, Bernstein A, Südkamp NP, Schmal H. In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation — a comparison. Int Orthop. 2017; 41(5):991–998. doi:10.1007/s00264-017-3400-y.
  • English A, Jones EA, Corscadden D, Henshaw K, Chapman T, Emery P, McGonagle D. A comparative assessment of cartilage and joint fat pad as a potential source of cells for autologous therapy development in knee osteoarthritis. Rheumatology. 2007; 46(11):1676–1683. doi:10.1093/rheumatology/kem217.
  • Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006; 97(1):84–97. doi:10.1002/jcb.20546.
  • Ichinose S, Muneta T, Koga H, Segawa Y, Tagami M, Tsuji K, Sekiya I. Morphological differences during in vitro chondrogenesis of bone marrow-, synovium-MSCs, and chondrocytes. Lab Investig. 2010; 90(2):210–221. doi:10.1038/labinvest.2009.125.
  • Lopa S, Colombini A, Stanco D, de Girolamo L, Sansone V, Moretti M. Donor-matched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment. Eur Cells Mater. 2014;27:298–311. doi:10.22203/eCM.v027a21.
  • Ioan-Facsinay A, Kloppenburg M. An emerging player in knee osteoarthritis: the infrapatellar fat pad. Arthritis Res Ther. 2013; 15(6):225–234. doi:10.1186/ar4422.
  • Do Amaral RJFC, Almeida HV, Kelly DJ, O’Brien FJ, Kearney CJ. Infrapatellar fat pad stem cells: from developmental biology to cell therapy. Stem Cells Int. 2017;2017:6843727. doi:10.1155/2017/6843727.
  • De Bari C, Dell ’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001; 44(8):1928–1942. doi:10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P.
  • Chang H, Knothe Tate ML. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med. 2012; 1(6):480–491. doi:10.5966/sctm.2011-0056.
  • Enochson L, Brittberg M, Lindahl A. Optimization of a chondrogenic medium through the use of factorial design of experiments. Biores Open Access. 2012; 1(6):306–313. doi:10.1089/biores.2012.0277.
  • Dragoo JL, Samimi B, Zhu M, Hame SL, Thomas BJ, Lieberman JR, Hedrick MH, Benhaim P. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J Bone Joint Surg Br. 2003; 85(5):740–747. doi:10.1302/0301-620X.85B5.13587.
  • Neri S, Guidotti S, Lilli NL, Cattini L, Mariani E. Infrapatellar fat pad-derived mesenchymal stromal cells from osteoarthritis patients: in vitro genetic stability and replicative senescence. J Orthop Res. 2017; 35(5):1029–1037. doi:10.1002/jor.23349.
  • Fossett E, Khan WS, Longo UG, Smitham PJ. Effect of age and gender on cell proliferation and cell surface characterization of synovial fat pad derived mesenchymal stem cells. J Orthop Res. 2012; 30(7):1013–1018. doi:10.1002/jor.22057.
  • Gigante A, Andreoni C, Salvolini E, Ferretti C, Bianchi N, Mattioli-Belmonte M, Lucarini G, Vozzi G. Human periosteal derived stem cell potential: the impact of age. Stem Cell Rev Reports. 2014; 11(3):487–500. doi:10.1007/s12015-014-9559-3.
  • Katagiri K, Matsukura Y, Muneta T, Ozeki N, Mizuno M, Katano H, Sekiya I. Fibrous synovium releases higher numbers of mesenchymal stem cells than adipose synovium in a suspended synovium culture model. Arthrosc - J Arthrosc Relat Surg. 2017; 33(4):800–810. doi:10.1016/j.arthro.2016.09.033.
  • Tangchitphisut P, Srikaew N, Numhom S, Tangprasittipap A, Woratanarat P, Wongsak S, Kijkunasathian C, Hongeng S, Murray IR, Tawonsawatruk T. Infrapatellar fat pad: an alternative source of adipose-derived mesenchymal stem cells. Arthritis. 2016;2016:1–10. doi:10.1155/2016/4019873.
  • Jones E. Synovial mesenchymal stem cells in vivo: potential key players for joint regeneration. World J Rheumatol. 2011; 1(1):4. doi:10.5499/wjr.v1.i1.4.
  • De Bari C, Dell’Accio F, Vanlauwe J, Eyckmans J, Khan IM, Archer CW, Jones EA, McGonagle D, Mitsiadis TA, Pitzalis C, Luyten FP. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 2006; 54(4):1209–1221. doi:10.1002/art.21753.
  • De Bari C, Dell’Accio F, Luyten FP. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 2001; 44(1):85–95. doi:10.1002/1529-0131(200101)44:1<85::AID-ANR12>3.0.CO;2-6.
  • Stich S, Loch A, Park S, Ha T, Ringe J, Sittinger M. Characterization of single cell derived cultures of periosteal progenitor cells to ensure the cell quality for clinical application. PLoS One. 2017;12:e0178560.
  • Karystinou A, Dell’Accio F, Kurth TBA, Wackerhage H, Khan IM, Archer CW, Jones EA, Mitsiadis TA, de Bari C. Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology. 2009; 48(9):1057–1064. doi:10.1093/rheumatology/kep192.
  • Lee D-H, Joo S-D, Han S-B, Im J, Lee S-H, Sonn CH, Lee K-M. Isolation and expansion of synovial CD34 − CD44 + CD90 + mesenchymal stem cells: comparison of an enzymatic method and a direct explant technique. Connect Tissue Res. 2011; 52(3):226–234. doi:10.3109/03008207.2010.516850.
  • Qadan MA, Piuzzi NS, Boehm C, Bova W, Moos M, Midura RJ, Hascall VC, Malcuit C, Muschler GF. Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface and adipose tissue. Cytotherapy. 2018; 20(3):343–360. doi:10.1016/j.jcyt.2017.11.013.
  • Mendicino M, Bailey AM, Wonnacott K, Puri RK, Bauer SR. MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell. 2014; 14(2):141–145. doi:10.1016/j.stem.2014.01.013.
  • McLeod CM, Mauck RL. On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. Eur Cells Mater. 2017;34:217–231. doi:10.22203/eCM.v034a14.
  • Matsuoka F, Takeuchi I, Agata H, Kagami H, Shiono H, Kiyota Y, Honda H, Kato R. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells. PLoS One. 2013;8:2. doi:10.1371/journal.pone.0055082.
  • Kwee E, Saidel G, Powell K, Heylman C, Boehm C, Muschler G. Quantifying Proliferative and Surface Marker Heterogeneity in Colony Founding Connective Tissue Progenitors and Their Progeny Using Time-Lapse Microscopy. Tissue Eng Regen Med. 2018. In Press. doi:10.1002/term.2782
  • Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, Ransom RC, Reinisch A, Wearda T, Murphy M, Brewer RE, Koepke LS, Marecic O, Manjunath A, Seo EY, Leavitt T, Lu W-J, Nguyen A, Conley SD, Salhotra A, Ambrosi TH, Borrelli MR, Siebel T, Chan K, Schallmoser K, Seita J, Sahoo D, Goodnough H, Bishop J, Gardner M, Majeti R, Wan DC, Goodman S, Weissman IL, Chang HY, Longaker MT. Identification of the human skeletal stem cell. Cell. 2018; 175(1):43–56.e21. doi:10.1016/j.cell.2018.07.029.
  • Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther. 2004; 6(5):R422–R432. doi:10.1186/ar1210.
  • Campbell D, Pei M. Surface markers for chondrogenic determination: a highlight of synovium-derived stem cells. Cells. 2012; 1(4):1107–1120. doi:10.3390/cells1041107.
  • McCarthy HE, Bara JJ, Brakspear K, Singhrao SK, Archer CW. The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse. Vet J. 2012; 192(3):345–351. doi:10.1016/j.tvjl.2011.08.036.
  • Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, Ritt MJPF, van Milligen FJ. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006; 8(2):166–177. doi:10.1080/14653240600621125.
  • Jayasuriya CT, Chen Q. Potential benefits and limitations of utilizing chondroprogenitors in cell-based cartilage therapy. Connect Tissue Res. 2015; 56(4):265–271. doi:10.3109/03008207.2015.1040547.
  • Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008; 129(3):163–173. doi:10.1016/j.mad.2007.12.002.
  • Choi Y-S, Noh S-E, Lim S-M, Lee C-W, Kim C-S, Im M-W, Lee M-H, Kim D-I. Multipotency and growth characteristic of periosteum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol Lett. 2008; 30(4):593–601. doi:10.1007/s10529-007-9584-2.
  • Ding D-C, Wu K-C, Chou H-L, Hung W-T, Liu H-W, Chu T-Y. Human infrapatellar fat pad-derived stromal cells have more potent differentiation capacity than other mesenchymal cells and can be enhanced by hyaluronan. Cell Transplant. 2015; 24(7):1221–1232. doi:10.3727/096368914X681937.
  • Alegre-Aguaron E, Desportes P, Garcia-Alvarez F, Castiella T, Larrad L, Martinez-Lorenzo MJ. Differences in surface marker expression and chondrogenic potential among various tissue-derived mesenchymal cells from elderly patients with osteoarthritis. Cells Tissues Organs. 2012; 196(3):231–240. doi:10.1159/000334400.
  • Garcia J, Mennan C, McCarthy HS, Roberts S, Richardson JB, Wright KT. Chondrogenic potency analyses of donor-matched chondrocytes and mesenchymal stem cells derived from bone marrow, infrapatellar fat pad, and subcutaneous fat. Stem Cells Int. 2016;2016. doi:10.1155/2016/6969726.
  • Pires de Carvalho P, Hamel KM, Duarte R, King AGS, Haque M, Dietrich MA, Wu X, Shah F, Burk D, Reis RL, Rood J, Zhang P, Lopez M, Gimble JM, Dasa V. Comparison of infrapatellar and subcutaneous adipose tissue stromal vascular fraction and stromal/stem cells in osteoarthritic subjects. J Tissue Eng Regen Med. 2014; 8(10):757–762. doi:10.1002/term.1565.
  • Mantripragada VP, Piuzzi NS, Zachos T, Obuchowski NA, Muschler GF, Midura RJ. Histopathological assessment of primary osteoarthritic knees in large patient cohort reveal the possibility of several potential patterns of osteoarthritis initiation. Curr Res Transl Med. 2017; 65(4):133–139. doi:10.1016/j.retram.2017.09.002.
  • Mantripragada VP, Piuzzi NS, Zachos T, Obuchowski NA, Muschler GF, Midura RJ. High occurrence of osteoarthritic histopathological features unaccounted for by traditional scoring systems in lateral femoral condyles from total knee arthroplasty patients with varus alignment. Acta Orthop. 2018; 89(2):197–203. doi:10.1080/17453674.2017.1398559.
  • Van Landuyt KB, Jones EA, McGonagle D, Luyten FP, Lories RJ. Flow cytometric characterization of freshly isolated and culture expanded human synovial cell populations in patients with chronic arthritis. Arthritis Res Ther. 2010; 12(1):1–14. doi:10.1186/ar2916.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.