1,393
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus

ORCID Icon, , &
Pages 63-81 | Received 04 Feb 2019, Accepted 04 Sep 2019, Published online: 10 Oct 2019

References

  • Balague F, Mannion AF, Pellise F, Cedraschi C. Non-specific low back pain. Lancet. 2012;379:482–491. doi:10.1016/S0140-6736(11)60610-7.
  • Andersson GB. Epidemiological features of chronic low-back pain. Lancet. 1999;354:581–585. doi:10.1016/S0140-6736(99)01312-4.
  • Paajanen H, Erkintalo M, Parkkola R, Salminen J, Kormano M. Age-dependent correlation of low-back pain and lumbar disc regeneration. Arch Orthop Trauma Surg. 1997;116:106–107.
  • Miller JA, Schmatz C, Schultz AB. Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine (Phila Pa 1976). 1988;13:173–178.
  • Taher F, Essig D, Lebl DR, Hughes AP, Sama AA, Cammisa FP, Girardi FP. Lumbar degenerative disc disease: current and future concepts of diagnosis and management. Adv Orthop. 2012;2012:970752. doi:10.1155/2012/970752.
  • Chen WH, Lo W-C, Lee -J-J, Su C-H, Lin C-T, Liu H-Y, Lin T-W, Lin W-C, Huang T-Y, Deng W-P. Tissue-engineered intervertebral disc and chondrogenesis using human nucleus pulposus regulated through TGF-beta1 in platelet-rich plasma. J Cell Physiol. 2006;209:744–754. doi:10.1002/jcp.20765.
  • Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976). 2006;31:2151–2161. doi:10.1097/01.brs.0000231761.73859.2c.
  • Borenstein D. Mechanical low back pain–a rheumatologist’s view. Nat Rev Rheumatol. 2013;9:643–653. doi:10.1038/nrrheum.2013.133.
  • McCann MR, Séguin CA. Notochord cells in intervertebral disc development and degeneration. J Devl Biol. 2016;4:3. doi:10.3390/jdb4010003.
  • Aguiar DJ, Johnson SL, Oegema TR. Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res. 1999;246:129–137. doi:10.1006/excr.1998.4287.
  • Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn. 2008;237:3953–3958. doi:10.1002/dvdy.21805.
  • Erwin WM, Islam D, Inman RD, Fehlings MG, Tsui FW. Notochordal cells protect nucleus pulposus cells from degradation and apoptosis: implications for the mechanisms of intervertebral disc degeneration. Arthritis Res Ther. 2011;13:R215. doi:10.1186/ar3548.
  • Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J. Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine (Phila Pa 1976). 2006;31:873–882. discussion 883. doi:10.1097/01.brs.0000209302.00820.fd.
  • Yang F, Leung VY, Luk KD, Chan D, Cheung KM. Injury-induced sequential transformation of notochordal nucleus pulposus to chondrogenic and fibrocartilaginous phenotype in the mouse. J Pathol. 2009;218:113–121. doi:10.1002/path.2519.
  • Bedore J, Sha W, McCann MR, Liu S, Leask A, Séguin CA. Impaired intervertebral disc development and premature disc degeneration in mice with notochord-specific deletion of CCN2. Arthritis Rheum. 2013;65:2634–2644. doi:10.1002/art.38075.
  • Warraich S, Bone DBJ, Quinonez D, Ii H, Choi D-S, Holdsworth DW, Drangova M, Dixon SJ, Séguin CA, Hammond JR. Loss of equilibrative nucleoside transporter 1 in mice leads to progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis in humans. J Bone Miner Res. 2013;28:1135–1149. doi:10.1002/jbmr.1826.
  • Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, Alini M, Risbud MV, Chan D, Cheah KSE, Yamamura K-I, Masuda K, Okano H, Ando K, Mochida J. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun. 2012;3:1264. doi:10.1038/ncomms2226.
  • Ulici V, Kelley KL, Longobardi L, McNulty MA, Livingston EW, Bateman TA, Séguin CA, Louer CR, Loeser RF. Impaired annulus fibrosis development and vertebral fusion cause severe scoliosis in mice with deficiency of JNK1 and JNK2. Am J Pathol. 2019. doi:10.1016/j.ajpath.2018.12.010.
  • Liao L, Jiang H, Fan Y, Lu RS, Wei C, Takarada T, He S, Chen D. Runx2 is required for postnatal intervertebral disc tissue growth and development. J Cell Physiol. 2019;234:6679–6687. doi:10.1002/jcp.27410.
  • Zheng L, Cao Y, Ni S, Qi H, Ling Z, Xu X, Zou X, Wu T, Deng R, Hu B, Gao B, Chen H, Li Y, Zhu J, Tintani F, Demehri S, Jain A, Kebaish KM, Liao S, Séguin CA, Crane JL, Wan M, Lu H, Sponseller PD, Riley LH, Zhou X, Hu J, Cao X. Ciliary parathyroid hormone signaling activates transforming growth factor-beta to maintain intervertebral disc homeostasis during aging. Bone Res. 2018;6:21. doi:10.1038/s41413-018-0022-y.
  • Ngo K, Patil P, McGowan SJ, Niedernhofer LJ, Robbins PD, Kang J, Sowa G, Vo N. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype. Mech Ageing Dev. 2017;166:16–23. doi:10.1016/j.mad.2017.08.007.
  • Nakamichi R, Ito Y, Inui M, Onizuka N, Kayama T, Kataoka K, Suzuki H, Mori M, Inagawa M, Ichinose S, Lotz MK, Sakai D, Masuda K, Ozaki T, Asahara H. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun. 2016;7:12503. doi:10.1038/ncomms12503.
  • Phillips KL, Jordan-Mahy N, Nicklin MJ, Le Maitre CL. Interleukin-1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration. Ann Rheum Dis. 2013;72:1860–1867. doi:10.1136/annrheumdis-2012-202266.
  • Merceron C, Mangiavini L, Robling A, Wilson TL, Giaccia AJ, Shapiro IM, Schipani E, Risbud MV, Kletsas D. Loss of HIF-1alpha in the notochord results in cell death and complete disappearance of the nucleus pulposus. PLoS One. 2014;9:e110768. doi:10.1371/journal.pone.0110768.
  • Gorth DJ, Shapiro IM, Risbud MV. Transgenic mice overexpressing human TNF-alpha experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7. doi:10.1038/s41419-018-1246-x.
  • Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J. 2008;17:2–19. doi:10.1007/s00586-007-0414-y.
  • Ohnishi T, Sudo H, Tsujimoto T, Iwasaki N. Age-related spontaneous lumbar intervertebral disc degeneration in a mouse model. J Orthop Res. 2018;36:224–232. doi:10.1002/jor.23634.
  • Rutges J, Creemers LB, Dhert W, Milz S, Sakai D, Mochida J, Alini M, Grad S. Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration. Osteoarthritis Cartilage. 2010;18:416–423. doi:10.1016/j.joca.2009.09.009.
  • Thorpe AA, Binch AL, Creemers LB, Sammon C, Le Maitre CL. Nucleus pulposus phenotypic markers to determine stem cell differentiation: fact or fiction? Oncotarget. 2015. doi:10.18632/oncotarget.6782.
  • Tang X, Jing L, Richardson WJ, Isaacs RE, Fitch RD, Brown CR, Erickson MM, Setton LA, Chen J. Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res. 2016;34:1316–1326. doi:10.1002/jor.23244.
  • Richardson SM, Ludwinski FE, Gnanalingham KK, Atkinson RA, Freemont AJ, Hoyland JA. Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci Rep. 2017;7:1501. doi:10.1038/s41598-017-01567-w.
  • Chen J, Jing L, Gilchrist CL, Richardson WJ, Fitch RD, Setton LA. Expression of laminin isoforms, receptors, and binding proteins unique to nucleus pulposus cells of immature intervertebral disc. Connect Tissue Res. 2009;50:294–306.
  • Zhang Y, et al. Extracellular matrix and adhesion molecule gene expression in the normal and injured murine intervertebral disc. Am J Phys Med Rehabil. Publish Ahead of Print. 2018;1. doi:10.1097/PHM.0000000000001012.
  • Nettles DL, Richardson WJ, Setton LA. Integrin expression in cells of the intervertebral disc. J Anat. 2004;204:515–520. doi:10.1111/j.0021-8782.2004.00306.x.
  • Li K, Kapper D, Youngs B, Kocsis V, Mondal S, Kraus P, Lufkin T. Potential biomarkers of the mature intervertebral disc identified at the single cell level. J Anat. 2019;234:16–32. doi:10.1111/joa.12904.
  • van Den Akker GGH, Koenders MI, van de Loo FAJ, van Lent PLEM, Blaney Davidson E, van der Kraan PM. Transcriptional profiling distinguishes inner and outer annulus fibrosus from nucleus pulposus in the bovine intervertebral disc. Eur Spine J. 2017;26:2053–2062. doi:10.1007/s00586-017-5150-3.
  • Minogue BM, Richardson SM, Zeef LAH, Freemont AJ, Hoyland JA. Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum. 2010;62:3695–3705. doi:10.1002/art.27710.
  • Power KA, Grad S, Rutges JPHJ, Creemers LB, van Rijen MHP, O’Gaora P, Wall JG, Alini M, Pandit A, Gallagher WM. Identification of cell surface-specific markers to target human nucleus pulposus cells: expression of carbonic anhydrase XII varies with age and degeneration. Arthritis Rheum. 2011;63:3876–3886. doi:10.1002/art.30607.
  • Schubert AK, Smink J, Arp M, Ringe J, Hegewald A, Sittinger M. Quality assessment of surgical disc samples discriminates human annulus fibrosus and nucleus pulposus on tissue and molecular level. Int J Mol Sci. 2018;19. doi:10.3390/ijms19061761.
  • Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A membranome-centered approach defines novel biomarkers for cellular subtypes in the intervertebral disc. Cartilage. 2018. doi:10.1177/1947603518764260.
  • Riester SM, Lin Y, Wang W, Cong L, Mohamed Ali A-M, Peck SH, Smith LJ, Currier BL, Clark M, Huddleston P, Krauss W, Yaszemski MJ, Morrey ME, Abdel MP, Bydon M, Qu W, Larson AN, van Wijnen AJ, Nassr A. RNA sequencing identifies gene regulatory networks controlling extracellular matrix synthesis in intervertebral disk tissues. J Orthop Res®. 2018;36:1356–1369. doi:10.1002/jor.23834.
  • Fujita N, Miyamoto T, Imai J-I, Hosogane N, Suzuki T, Yagi M, Morita K, Ninomiya K, Miyamoto K, Takaishi H, Matsumoto M, Morioka H, Yabe H, Chiba K, Watanabe S, Toyama Y, Suda T. CD24 is expressed specifically in the nucleus pulposus of intervertebral discs. Biochem Biophys Res Commun. 2005;338:1890–1896. doi:10.1016/j.bbrc.2005.10.166.
  • Lee CR, Sakai D, Nakai T, Toyama K, Mochida J, Alini M, Grad S. A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J. 2007;16:2174–2185. doi:10.1007/s00586-007-0475-y.
  • Tang X, Jing L, Chen J, Pandit A. Changes in the molecular phenotype of nucleus pulposus cells with intervertebral disc aging. PLoS One. 2012;7. doi:10.1371/journal.pone.0052020.
  • Sakai D, Nakai T, Mochida J, Alini M, Grad S. Differential phenotype of intervertebral disc cells: microarray and immunohistochemical analysis of canine nucleus pulposus and anulus fibrosus. Spine. 2009;34:1448–1456. doi:10.1097/BRS.0b013e3181a55705.
  • Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA. Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther. 2010;12. doi:10.1186/ar2929.
  • Rodrigues-Pinto R, Richardson SM, Hoyland JA. Identification of novel nucleus pulposus markers: interspecies variations and implications for cell-based therapiesfor intervertebral disc degeneration. Bone Joint Res. 2013;2:169–178. doi:10.1302/2046-3758.28.2000184.
  • Rodrigues-Pinto R, Ward L, Humphreys M, Zeef LAH, Berry A, Hanley KP, Hanley N, Richardson SM, Hoyland JA. Human notochordal cell transcriptome unveils potential regulators of cell function in the developing intervertebral disc. Sci Rep. 2018;8:12866. doi:10.1038/s41598-018-31172-4.
  • Gruber HE, Hoelscher GL, Ingram JA, Bethea S, Hanley EN Jr. Autophagy in the degenerating human intervertebral disc: in Vivo molecular and morphological evidence, and induction of autophagy in cultured annulus cells exposed to proinflammatory cytokines-implications for disc degeneration. Spine (Phila Pa 1976). 2015;40:773–782. doi:10.1097/BRS.0000000000000865.
  • Gruber HE, Hoelscher GL, Ingram JA, Hanley EN Jr. Genome-wide analysis of pain-, nerve- and neurotrophin -related gene expression in the degenerating human annulus. Mol Pain. 2012;8:63. doi:10.1186/1744-8069-8-63.
  • Gruber HE, Mougeot JL, Hoelscher G, Ingram JA, Hanley EN Jr. Microarray analysis of laser capture microdissected-anulus cells from the human intervertebral disc. Spine (Phila Pa 1976). 2007;32:1181–1187. doi:10.1097/BRS.0b013e318053ec89.
  • Kazezian Z, Gawri R, Haglund L, Ouellet J, Mwale F, Tarrant F, O’Gaora P, Pandit A, Alini M, Grad S. Gene expression profiling identifies interferon signalling molecules and IGFBP3 in human degenerative annulus fibrosus. Sci Rep. 2015;5:15662. doi:10.1038/srep15662.
  • McCann MR, Tamplin OJ, Rossant J, Seguin CA. Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development. Dis Model Mech. 2011; doi:10.1242/dmm.008128 [pii].
  • Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45:593–605. doi:10.1002/dvg.20335.
  • McCann MR, Patel P, Pest MA, Ratneswaran A, Lalli G, Beaucage KL, Backler GB, Kamphuis MP, Esmail Z, Lee J, Barbalinardo M, Mort JS, Holdsworth DW, Beier F, Dixon SJ, Séguin CA. Repeated exposure to high-frequency low-amplitude vibration induces degeneration of murine intervertebral discs and knee joints. Arthritis Rheumatol. 2015;67:2164–2175. doi:10.1002/art.39154.
  • McCann MR, Patel P, Beaucage KL, Xiao Y, Bacher C, Siqueira WL, Holdsworth DW, Dixon SJ, Séguin CA. Acute vibration induces transient expression of anabolic genes in the murine intervertebral disc. Arthritis Rheum. 2013;65:1853–1864. doi:10.1002/art.37979.
  • McCann MR, Veras MA, Yeung C, Lalli G, Patel P, Leitch KM, Holdsworth DW, Dixon SJ, Séguin CA. Whole-body vibration of mice induces progressive degeneration of intervertebral discs associated with increased expression of Il-1beta and multiple matrix degrading enzymes. Osteoarthritis Cartilage. 2017;25:779–789. doi:10.1016/j.joca.2017.01.004.
  • Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IK, Bishop PB. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976). 1990;15:411–415. doi:10.1097/00007632-199005000-00012.
  • Irizarry RA, et al Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31:e15.
  • Veras MA, Tenn NA, Kuljanin M, Lajoie GA, Hammond JR, Dixon SJ, Séguin CA. Loss of ENT1 increases cell proliferation in the annulus fibrosus of the intervertebral disc. J Cell Physiol. 2019. doi:10.1002/jcp.28051.
  • Balwierz PJ, Pachkov M, Arnold P, Gruber AJ, Zavolan M, van Nimwegen E. ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome Res. 2014;24:869–884. doi:10.1101/gr.169508.113.
  • Risbud MV, Schoepflin ZR, Mwale F, Kandel RA, Grad S, Iatridis JC, Sakai D, Hoyland JA. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine research interest group at the 2014 annual ORS meeting. J Orthop Res. 2015;33:283–293. doi:10.1002/jor.22789.
  • Numaguchi S, Esumi M, Sakamoto M, Endo M, Ebihara T, Soma H, Yoshida A, Tokuhashi Y. Passive cigarette smoking changes the circadian rhythm of clock genes in rat intervertebral discs. J Orthop Res. 2016;34:39–47. doi:10.1002/jor.22941.
  • Smolders LA, Meij BP, Onis D, Riemers FM, Bergknut N, Wubbolts R, Grinwis GC, Groot Koerkamp MJ, van Leenen D, Holstege FC, Hazewinkel HA, Creemers LB, Penning LC, Tryfonidou MA. Gene expression profiling of early intervertebral disc degeneration reveals a down-regulation of canonical Wnt signaling and caveolin-1 expression: implications for development of regenerative strategies. Arthritis Res Ther. 2013;15. doi:10.1186/ar4157.
  • Scheil-Bertram S, Kappler R, von Baer A, Hartwig E, Sarkar M, Serra M, Brüderlein S, Westhoff B, Melzner I, Bassaly B, Herms J, Hugo -H-H, Schulte M, Möller P. Molecular profiling of chordoma. Int J Oncol. 2014;44:1041–1055. doi:10.3892/ijo.2014.2268.
  • Ellis K, Bagwell J, Biol B-MJ. Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. J Cell Biol. 2013. doi:10.1083/jcb.201212095.
  • Huber O. Structure and function of desmosomal proteins and their role in development and disease. Cell Molr Life Sci CMLS. 2003. doi:10.1007/s00018-003-3050-7.
  • Shine KM, Simson JA, Spector M. Lubricin distribution in the human intervertebral disc. J Bone Joint Surg Am. 2009;91:2205–2212. doi:10.2106/JBJS.H.01344.
  • Onnerfjord P, Khabut A, Reinholt FP, Svensson O, Heinegard D. Quantitative proteomic analysis of eight cartilaginous tissues reveals characteristic differences as well as similarities between subgroups. J Biol Chem. 2012;287:18913–18924. doi:10.1074/jbc.M111.298968.
  • Song YQ, Ho DW, Karppinen J, Kao PY, Fan B-J, Luk KD, Yip S-P, Leong JC, Cheah KS, Sham P, Chan D, Cheung KM. Association between promoter-1607 polymorphism of MMP1 and lumbar disc disease in Southern Chinese. BMC Med Genet. 2008;9. doi:10.1186/1471-2350-9-38. Artn 38.
  • Zhang Y, Xiong C, Kudelko M, Li Y, Wang C, Wong YL, Tam V, Rai MF, Cheverud J, Lawson HA, Sandell L, Chan WCW, Cheah KSE, Sham PC, Chan D. Early onset of disc degeneration in SM/J mice is associated with changes in ion transport systems and fibrotic events. Matrix Biol. 2018;70:123–139. doi:10.1016/j.matbio.2018.03.024.
  • Peck SH, McKee KK, Tobias JW, Malhotra NR, Harfe BD, Smith LJ. Whole transcriptome analysis of notochord-derived cells during embryonic formation of the nucleus pulposus. Sci Rep. 2017;7:10504. doi:10.1038/s41598-017-10692-5.
  • Choi H, Tessier S, Silagi ES, Kyada R, Yousefi F, Pleshko N, Shapiro IM, Risbud MV. A novel mouse model of intervertebral disc degeneration shows altered cell fate and matrix homeostasis. Matrix Biol. 2018;70:102–122. doi:10.1016/j.matbio.2018.03.019.
  • Dhahbi JM. Circulating small noncoding RNAs as biomarkers of aging. Ageing Res Rev. 2014;17:86–985. doi:10.1016/j.arr.2014.02.005.
  • Olivieri F, Capri M, Bonafè M, Morsiani C, Jung HJ, Spazzafumo L, Viña J, Suh Y. Circulating miRNAs and miRNA shuttles as biomarkers: perspective trajectories of healthy and unhealthy aging. Mech Ageing Dev. 2017;165:162–170. doi:10.1016/j.mad.2016.12.004.
  • Ashley JW, Enomoto-Iwamoto M, Smith LJ, Mauck RL, Chan D, Lee J, Heyworth MF, An H, Zhang Y. Intervertebral disc development and disease-related genetic polymorphisms. Genes Dis. 2016;3:171–177. doi:10.1016/j.gendis.2016.04.006.
  • Stemple DL. Structure and function of the notochord: an essential organ for chordate development. Development. 2005;132:2503–2512. doi:10.1242/dev.01812.
  • Liu FT, Hsu DK, Zuberi RI, Hill PN, Shenhav A, Kuwabara I, Chen SS. Modulation of functional properties of galectin-3 by monoclonal antibodies binding to the non-lectin domains. Biochemistry. 1996;35:6073–6079. doi:10.1021/bi952716q.
  • DiGiacomo V, Meruelo D. Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol Rev Camb Philos Soc. 2016;91:288–310. doi:10.1111/brv.12170.
  • Gilchrist CL, Chen J, Richardson WJ, Loeser RF, Setton LA. Functional integrin subunits regulating cell-matrix interactions in the intervertebral disc. J Orthop Res. 2007;25:829–840. doi:10.1002/jor.20343.
  • Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo award in basic science. Spine (Phila Pa 1976). 2002;27:2631–2644. doi:10.1097/01.BRS.0000035304.27153.5B.
  • Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine. 1995;20:1307–1314. doi:10.1097/00007632-199506000-00022.
  • Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003;5:120–130.
  • Francisco AT, Mancino RJ, Bowles RD, Brunger JM, Tainter DM, Chen Y-T, Richardson WJ, Guilak F, Setton LA. Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration. Biomaterials. 2013;34:7381–7388. doi:10.1016/j.biomaterials.2013.06.038.
  • Winkler T, Mahoney EJ, Sinner D, Wylie CC, Dahia CL. Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse. PLoS One. 2014;9:e98444. doi:10.1371/journal.pone.0098444.
  • Crozatier B, et al. Role of creatine kinase in cardiac excitation-contraction coupling: studies in creatine kinase-deficient mice. Faseb J. 2002;16:653–660.
  • Hsu I, Parkinson LG, Shen Y, Toro A, Brown T, Zhao H, Bleackley RC, Granville DJ. Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing. Cell Death Dis. 2014;5:e1458. doi:10.1038/cddis.2014.423.
  • Ye W, Xu K, Huang D, Liang A, Peng Y, Zhu W, Li C. Age-related increases of macroautophagy and chaperone-mediated autophagy in rat nucleus pulposus. Connect Tissue Res. 2011;52:472–478. doi:10.3109/03008207.2011.564336.
  • Smolders LA, Meij BP, Riemers FM, Licht R, Wubbolts R, Heuvel D, Grinwis GCM, Vernooij HCM, Hazewinkel HAW, Penning LC, Tryfonidou MA. Canonical Wnt signaling in the notochordal cell is upregulated in early intervertebral disk degeneration. J Orthop Res. 2012;30:950–957. doi:10.1002/jor.22000.
  • Feng C, Liu H, Yang M, Zhang Y, Huang B, Zhou Y. Disc cell senescence in intervertebral disc degeneration: causes and molecular pathways. Cell Cycle. 2016. doi:10.1080/15384101.2016.1152433.
  • Ariga K, Yonenobu K, Nakase T, Kaneko M, Spine O-S. Localization of cathepsins D, K, and L in degenerated human intervertebral discs. Spine. 2001. doi:10.1097/00007632-200112150-00007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.