208
Views
0
CrossRef citations to date
0
Altmetric
Research Article

280 mT static magnetic field promotes the growth of postpartum condylar cartilage

, , , , &
Pages 248-261 | Received 24 Feb 2022, Accepted 07 Nov 2022, Published online: 05 Dec 2022

References

  • Li Y, Yang P, Fan X, Wang J, Liu J, Zhao Z, Zhao M. Static magnetic field combined with functional appliances: a new approach to enhance mandibular growth in class II malocclusion. Med Hypotheses. 2009; 72(3):276–279. doi:10.1016/j.mehy.2008.08.029
  • Phelan A, Tarraf NE, Taylor P, Hönscheid R, Drescher D, Baccetti T, Darendeliler MA. Skeletal and dental outcomes of a new magnetic functional appliance, the Sydney magnoglide, in class II correction. Am J Orthod Dentofacial Orthop. 2012; 141(6):759–772. doi:10.1016/j.ajodo.2012.01.014
  • Vardimon AD, Köklü S, Iseri H, Shpack N, Fricke J, Mete L. An assessment of skeletal and dental responses to the functional magnetic system (FMS). Am J Orthod Dentofacial Orthop. 2001; 120(4):416–426. doi:10.1067/mod.2001.116084
  • Rabie AB, She TT, Hägg U. Functional appliance therapy accelerates and enhances condylar growth. Am J Orthod Dentofacial Orthop. 2003; 123(1):40–48. doi:10.1067/mod.2003.45
  • Shen G, Darendeliler MA. The adaptive remodeling of condylar cartilage—a transition from chondrogenesis to osteogenesis. J Dent Res. 2005; 84(8):691–699. doi:10.1177/154405910508400802
  • Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002; 16(21):2813–2828. doi:10.1101/gad.1017802
  • Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010; 339(1):189–195. doi:10.1007/s00441-009-0832-8
  • Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–336. doi:10.1038/nature01657.
  • Zhang M, Li X, Bai L, Uchida K, Bai W, Wu B, Xu W, Zhu H, Huang H. Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: an in vitro study. Bioelectromagnetics. 2013;34(1):74–80. doi:10.1002/bem.21747.
  • Wang J, Tang N, Xiao Q, Zhang L, Li Y, Li J, Wang J, Zhao Z, Tan L. Pulsed electromagnetic field may accelerate in vitro endochondral ossification. Bioelectromagnetics. 2015;36(1):35–44. doi:10.1002/bem.21882.
  • Mayer-Wagner S, Passberger A, Sievers B, Aigner J, Summer B, Schiergens TS, Jansson V, Müller PE. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics. 2011;32(4):283–290. doi:10.1002/bem.20633.
  • Escobar JF, Vaca-González JJ, Guevara JM, Vega JF, Hata YA, Garzón-Alvarado DA. In Vitro evaluation of the effect of stimulation with magnetic fields on chondrocytes. Bioelectromagnetics. 2020;41(1):41–51. doi:10.1002/bem.22231.
  • Bekhite MM, Finkensieper A, Abou-Zaid FA, El-Shourbagy IK, Omar KM, Figulla HR, Sauer H, Wartenberg M. Static electromagnetic fields induce vasculogenesis and chondro-osteogenesis of mouse embryonic stem cells by reactive oxygen species-mediated up-regulation of vascular endothelial growth factor. Stem Cells Dev. 2010; 19(5):731–743. doi:10.1089/scd.2008.0266
  • Li X, Young NM, Tropp S, Hu D, Xu Y, Hallgrímsson B, Marcucio RS. Quantification of shape and cell polarity reveals a novel mechanism underlying malformations resulting from related FGF mutations during facial morphogenesis. Hum Mol Genet. 2013; 22(25):5160–5172. doi:10.1093/hmg/ddt369
  • Gong SG, Mai S, Chung K, Wei K. Flrt2 and Flrt3 have overlapping and non-overlapping expression during craniofacial development. Gene Expr Patterns. 2009; 9(7):497–502. doi:10.1016/j.gep.2009.07.009
  • Böttcher RT, Pollet N, Delius H, Niehrs C. The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling. Nat Cell Biol. 2004; 6(1):38–44. doi:10.1038/ncb1082
  • Zhang JM, Chen HY, Zhang L. Pancherz’s analysis in evaluating the treatment effects of headgear-activator on skeletal class II division 1 malocclusion. Hua Xi Kou Qiang Yi Xue Za Zhi= Huaxi Kouqiang Yixue Zazhi= West China Journal of Stomatology. 2007; 25(6): 557–560.
  • Rock WP. Treatment of class II malocclusions with removable appliances. Part 3. Functional appliance therapy. Br Dent J. 1990; 168(6):253–256. doi:10.1038/sj.bdj.4807163
  • Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010; 147(1):35–51. doi:10.1093/jb/mvp148
  • Yu S, Shang P. A review of bioeffects of static magnetic field on rodent models. Prog Biophys Mol Biol. 2014; 114(1):14–24. doi:10.1016/j.pbiomolbio.2013.11.002
  • Li W, Zhao S, He W, Zhang M, Li S, Xu Y. Static magnetic fields accelerate osteogenesis by regulating FLRT/BMP pathway. Biochem Biophys Res Commun. 2020; 527(1):83–89. doi:10.1016/j.bbrc.2020.04.090
  • Zhang H, Gan L, Zhu X, Wang J, Han L, Cheng P, Jing D, Zhang X, Shan Q. Moderate-intensity 4mt static magnetic fields prevent bone architectural deterioration and strength reduction by stimulating bone formation in streptozotocin-treated diabetic rats. Bone. 2018;107:36–44. doi:10.1016/j.bone.2017.10.024.
  • Kurio N, Saunders C, Bechtold TE, Salhab I, Nah HD, Sinha S, Billings PC, Pacifici M, Koyama E. Roles of Ihh signaling in chondroprogenitor function in postnatal condylar cartilage. Matrix Biol. 2018;67:15–31. doi:10.1016/j.matbio.2018.02.011.
  • Embree MC, Chen M, Pylawka S, Kong D, Iwaoka GM, Kalajzic I, Yao H, Shi C, Sun D, Sheu TJ, Koslovsky DA, Koch A, Mao JJ. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat Commun. 2016;7(1):13073. doi:10.1038/ncomms13073.
  • Furstman LL. Normal age changes in the rat mandibular joint. J Dent Res. 1966; 45(2):291–296. doi:10.1177/00220345660450021301
  • Gerling JA, Sinclair PM, Roa RL. The effect of pulsating electromagnetic fields on condylar growth in guinea pigs. Am J Orthod. 1985; 87(3):211–223. doi:10.1016/0002-9416(85)90042-9
  • Shu B, Zhang M, Xie R, Wang M, Jin H, Hou W, Tang D, Harris SE, Mishina Y, O’Keefe RJ, Hilton MJ, Wang Y, Chen D. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci. 2011;124(20):3428–3440. doi:10.1242/jcs.083659.
  • Garrison P, Yue S, Hanson J, Baron J, Lui JC. Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage. PLoS One. 2017;12(5):e0176752. doi:10.1371/journal.pone.0176752.
  • Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM. BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci U S A. 2005; 102(50):18023–18027. doi:10.1073/pnas.0503617102
  • Tsumaki N, Nakase T, Miyaji T, Kakiuchi M, Kimura T, Ochi T, Yoshikawa H. Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis. J Bone Miner Res. 2002; 17(5):898–906. doi:10.1359/jbmr.2002.17.5.898
  • Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A. 2005; 102(14):5062–5067. doi:10.1073/pnas.0500031102
  • Retting KN, Song B, Yoon BS, Lyons KM. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development. 2009;136(7):1093–1104. doi:10.1242/dev.029926.
  • Zhao M, Qiao M, Oyajobi BO, Mundy GR, Chen D. E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. J Biol Chem. 2003; 278(30):27939–27944. doi:10.1074/jbc.M304132200
  • Wang Q, Wei X, Zhu T, Zhang M, Shen R, Xing L, O’Keefe RJ, Chen D. Bone morphogenetic protein 2 activates Smad6 gene transcription through bone-specific transcription factor Runx2. J Biol Chem. 2007; 282(14):10742–10748. doi:10.1074/jbc.M610997200
  • Fuentes MA, Opperman LA, Bellinger LL, Carlson DS, Hinton RJ. Regulation of cell proliferation in rat mandibular condylar cartilage in explant culture by insulin-like growth factor-1 and fibroblast growth factor-2. Arch Oral Biol. 2002; 47(9):643–654. doi:10.1016/s0003-9969(02)00052-3
  • Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev. 2005; 16(2):205–213. doi:10.1016/j.cytogfr.2005.02.003
  • Tomás AR, Certal AC, Rodríguez-León J. FLRT3 as a key player on chick limb development. Dev Biol. 2011; 355(2):324–333. doi:10.1016/j.ydbio.2011.04.031
  • Zhang J, Ding C, Ren L, Zhou Y, Shang P. The effects of static magnetic fields on bone. Prog Biophys Mol Biol. 2014; 114(3):146–152. doi:10.1016/j.pbiomolbio.2014.02.001
  • Cho GS, Choi SC, Han JK. BMP signal attenuates FGF pathway in anteroposterior neural patterning. Biochem Biophys Res Commun. 2013; 434(3):509–515. doi:10.1016/j.bbrc.2013.03.105
  • Bénazet JD, Bischofberger M, Tiecke E, Gonçalves A, Martin JF, Zuniga A, Naef F, Zeller R. A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science. 2009; 323(5917):1050–1053. doi:10.1126/science.1168755
  • Tirosh-Finkel L, Zeisel A, Brodt-Ivenshitz M, Shamai A, Yao Z, Seger R, Domany E, Tzahor E. BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development. 2010;137(18):2989–3000. doi:10.1242/dev.051649.
  • Cho GS, Park DS, Choi SC, Han JK. Tbx2 regulates anterior neural specification by repressing FGF signaling pathway. Dev Biol. 2017; 421(2):183–193. doi:10.1016/j.ydbio.2016.11.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.