200
Views
0
CrossRef citations to date
0
Altmetric
Review

Formyl peptide receptors in bone research

, , , , &
Pages 229-237 | Received 28 Feb 2022, Accepted 11 Nov 2022, Published online: 28 Nov 2022

References

  • Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. International union of basic and clinical pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev. 2009;61(2):119–161. doi:10.1124/pr.109.001578.
  • Bao L, Gerard NP, Eddy RL Jr., Shows TB, Gerard C. Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19. Genomics. 1992;13(2):437–440. doi:10.1016/0888-7543(92)90265-T.
  • Ward PA, Lepow IH, Newman LJ. Bacterial factors chemotactic for polymorphonuclear leukocytes. Am J Pathol. 1968;52(4):725–736.
  • Schiffmann E, Showell HV, Corcoran BA, Ward PA, Smith E, Becker EL. The isolation and partial characterization of neutrophil chemotactic factors from Escherichia coli. Journal of Immunology. 1831–1837, 1975b;114.
  • Marasco WA, Phan SH, Krutzsch H, Showell HJ, Feltner DE, Nairn R, Becker EL, Ward PA. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem. 1984;259(9):5340–5439. doi:10.1016/S0021-9258(18)91029-X.
  • Rot A, Henderson LE, Copeland TD, Leonard EJ. A series of six ligands for the human formyl peptide receptor: tetrapeptides with high chemotactic potency and efficacy. Proc Natl Acad Sci U S A. 1987;84(22):7967–7971. doi:10.1073/pnas.84.22.7967.
  • Schiffmann E, Corcoran BA, Wahl SM. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975a;72(3):1059–1062. doi:10.1073/pnas.72.3.1059.
  • Raoof M, Zhang Q, Itagaki K, Hauser C. Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. Journal of Trauma: Injury, Infection, and Critical Care. 2010;68(6):1328–1334. doi:10.1097/TA.0b013e3181dcd28d.
  • Williams LT, Snyderman R, Pike MC, Lefkowitz RJ. Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1977;74(3):1204–1208. doi:10.1073/pnas.74.3.1204.
  • Yang D, Chen Q, Stoll S, Chen X, Howard OM, Oppenheim JJ. Differential regulation of responsiveness to fMLP and C5a upon dendritic cell maturation: correlation with receptor expression. Journal of Immunology. 2000;165(5):2694–2702. doi:10.4049/jimmunol.165.5.2694.
  • Kim SD, Kim JM, Jo SH, Lee HY, Lee SY, Shim JW, Seo SK, Yun J, Bae YS. Functional expression of formyl peptide receptor family in human NK cells. Journal of Immunology. 2009;183(9):5511–5517. doi:10.4049/jimmunol.0802986.
  • Lee TH, Horton CE, Kyan-Aung U, Haskard D, Crea AE, Spur BW. Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Clin Sci. 1989;77(2):195–203. doi:10.1042/cs0770195.
  • Yang D, Chen Q, Le Y, Wang JM, Oppenheim JJ. Differential regulation of formyl peptide receptor-like 1 expression during differentiation of monocytes to dendritic cells and macrophages. Journal of Immunology. 2001;166(6):4092–4098. doi:10.4049/jimmunol.166.6.4092.
  • Nagaya T, Kawata K, Kamekura R, Jitsukawa S, Kubo T, Kamei M, Ogasawara N, Takano KI, Himi T, Ichimiya S. Lipid mediators foster the differentiation of T follicular helper cells. Immunol Lett. 2017;181:51–57. doi:10.1016/j.imlet.2016.11.006.
  • De’Acquisto F, Merghani A, Lecona E, Rosignoli G, Raza K, Buckley CD, Flower RJ, Perretti M. Annexin-A1 modulates T-cell activation and differentiation. Blood. 2007;109(3):1095–1102. doi:10.1182/blood-2006-05-022798.
  • Huang P, Zhou Y, Liu Z, Zhang P. Interaction between ANXA1 and GATA-3 in immunosuppression of CD4+ T cells. Mediators Inflamm. 2016;2:1–9. doi:10.1155/2016/1701059.
  • Kim S-H, Kim YN, Jang Y-S. Cutting edge: lL-37–mediated formyl peptide receptor-2 signaling in follicular dendritic cells contributes to B cell activation in peyer’s patch germinal centers. Journal of Immunology. 2017;198(2):629–633. doi:10.4049/jimmunol.1600886.
  • Ramon S, Bancos S, Serhan CN, Phipps RP. Lipoxin a 4 modulates adaptive immunity by decreasing memory B -cell responses via an ALX / FPR 2-dependent mechanism. Eur J Immunol. 2014;44(2):357–369. doi:10.1002/eji.201343316.
  • Murphy PM, Ozcelik T, Kenney RT, Tiffany HL, McDermott D, Francke U. A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J Biol Chem. 1992;267(11):7637–7643. doi:10.1016/S0021-9258(18)42563-X.
  • Yang D, Chen Q, Gertz B, He R, Phulsuksombati M, Ye RD, Oppenheim JJ. Human dendritic cells express functional formyl peptide receptor-like-2 (FPRL2) throughout maturation. J Leukoc Biol. 2002;72(3):598–607. doi:10.1189/jlb.72.3.598.
  • Devosse T, Guillabert A, D’Haene N, Berton A, De Nadai P, Noel S, Brait M, Franssen JD, Sozzani S, Salmon I, Parmentier M. Formyl peptide receptor-like 2 is expressed and functional in plasmacytoid dendritic cells, tissue-specific macrophage subpopulations, and eosinophils. Journal of Immunology. 2009;182(8):4974–4984. doi:10.4049/jimmunol.0803128.
  • McCoy R, Haviland DL, Molmenti EP, Ziambaras T, Wetsel RA, Perlmutter DH. N-formylpeptide and complement C5a receptors are expressed in liver cells and mediate hepatic acute phase gene regulation. J Exp Med. 1995;182(1):207–217. doi:10.1084/jem.182.1.207.
  • Lacy M, Jones J, Whittemore SR, Haviland DL, Wetsel RA, Barnum SR. Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J Neuroimmunol. 1995;61(1):71–78. doi:10.1016/0165-5728(95)00075-D.
  • Le Y, Hu J, Gong W, Shen W, Li B, Dunlop NM, Halverson DO, Blair DG, Wang JM. Expression of functional formyl peptide receptors by human astrocytoma cell lines. J Neuroimmunol. 2000;111(1–2):102–108. doi:10.1016/S0165-5728(00)00373-8.
  • Keitoku M, Kohzuki M, Katoh H, Funakoshi M, Suzuki S, Takeuchi M, Karibe A, Horiguchi S, Watanabe J, Satoh S, Nose M, Abe K, Okayama H, Shirato K. FMLP actions and its binding sites in isolated human coronary arteries. J Mol Cell Cardiol. 1997;29(3):881–894. doi:10.1006/jmcc.1996.0291.
  • He H-Q, Ye RD. The formyl peptide receptors: diversity of ligands and mechanism for recognition. Molecules: A Journal of Synthetic Chemistry and Natural Product Chemistry. 2017;22(3):455. doi:10.3390/molecules22030455.
  • Peat G, Croft P, Hay E. Clinical assessment of the osteoarthritis patient. Best Pract Res Clin Rheumatol. 2001;15(4):527–544. doi:10.1053/berh.2001.0171.
  • Gjertsson I, Jonsson I-M, Peschel A, Tarkowski A, Lindhold C. Formylated peptides are important virulence factors in Staphylococcus aureus arthritis in mice. J Infect Dis. 2012;205(2):305–311. doi:10.1093/infdis/jir713.
  • Yang X, Ignozzi AJ, He R, Zhu D, Wang X, Chordia MD, Pan D, Cui Q. Detection of osteoarthritis inflammation by single-photon emission computed tomography based on an inflammation-targeting peptide cFLFLF. Molecular Imaging and Biology. 2021;23(6):895–904. doi:10.1007/s11307-021-01616-x.
  • Wang X, Oo WM, Linklater JM. What is the role of imaging in the clinical diagnosis of osteoarthritis and disease management? Rheumatology. 2018;57(4):51–60. doi:10.1093/rheumatology/kex501.
  • Yang X, Chordia MD, Du X, Graves JL, Zhang Y, Park Y-S, Guo Y, Pan D, Cui Q. Targeting formyl peptide receptor 1 of activated macrophages to monitor inflammation of experimental osteoarthritis in rat. Journal of Orthopaedic Research. 2015;34(9):1529–1538. doi:10.1002/jor.23148.
  • Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, Callahan L, Copenhaver C, Dodge C, Felson D, Gellar K, Harvey WF, Hawker G, Herzig E, Kwoh CK, Nelson AE, Samuels J, Scanzello C, White D, Wise B, Altman RD, DiRenzo D, Fontanarosa J, Giradi G, Ishimori M, Devyani M, Shah AA, Schmagel AK, Thoma LM, Turgunbaev M, Turner AS, Reston J. 2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2020;72(2):149–162. doi:10.1002/acr.24131.
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–317. doi:10.1080/14653240600855905.
  • Viswanathan A, Painter RG, Lanson NA Jr., Wang G. Functional expression of N-formyl peptide receptors in human bone marrow-derived mesenchymal stem cells. Stem Cells. 2007;25(5):1263–1269. doi:10.1634/stemcells.2006-0522.
  • Kim M-K, Min DS, Park YJ, Kim JH, Ryu SH, Bae Y-S. Expression and functional role of formyl peptide receptor in human bone marrow-derived mesenchymal stem cells. FEBS Lett. 2007;581(9):1917–1922. doi:10.1016/j.febslet.2007.03.078.
  • Gao W, Yang X, Du J, Wang H, Zhong H, Jiang J, Yang C. Glucocorticoid guides mobilization of bone marrow stem/progenitor cells via FPR and CXCR4 coupling. Stem Cell Res Ther. 2021;12(1):16. doi:10.1186/s13287-020-02071-1.
  • Shin MK, Jang YH, Yoo HJ, Kang DW, Park MH, Kim MK, Song JH, Kim SD, Min G, You HK, Choi KY, Bae Y-S, Min DS. N-formyl-methionyl-leucyl-phenylalanine (fMLP) promotes osteoblast differentiation via the N-formyl peptide receptor 1-mediated signaling pathway in human mesenchymal stem cells from bone marrow. J Biol Chem. 2011;286(19):17133–17143. doi:10.1074/jbc.M110.197772.
  • Ozeki N, Muneta T, Koga H, Nakagawa Y, Mizuno M, Tsuji K, Mabuchi Y, Akazawa C, Kobayashi E, Matsumoto K, Futamura K, Saito T, Sekiya I. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthritis and Cartilage. 2016;24(6):1061–1070. doi:10.1016/j.joca.2015.12.018.
  • Sekiya I, Katano H, Mizuno M, Koga H, Masumoto J, Tomita M, Ozeki N. Alterations in cartilage quantification before and after injections of mesenchymal stem cells into osteoarthritic knees. Sci Rep. 2021;11(1):13832. doi:10.1038/s41598-021-93462-8.
  • Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nature Reviews in Rheumatology. 2014;10(1):44–56. doi:10.1038/nrrheum.2013.160.
  • Lyu F-J, Cui H, Pan H, Cheung KM, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Research. 2021;9(1):7. doi:10.1038/s41413-020-00125-x.
  • Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26(17):1873–1878. doi:10.1097/00007632-200109010-00011.
  • Boden SD, McCowin PR, Davis DO, Dina TS, Mark AS, Wiesel S. Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. Journal of Bone and Joint Surgery – Series A. 1990;72(8):1178–1184. doi:10.2106/00004623-199072080-00008.
  • Rothoerl RD, Woertgen C, Brawanski A. Pain resolution after lumbar disc surgery is influenced by macrophage tissue infiltration. A prospective consecutive study on 177 patients. Journal of Clinical Neuroscience. 2002;9(6):633–636. doi:10.1054/jocn.2002.1137.
  • Takada T, Nishida K, Maeno K, Kakutani K, Yurube T, Doita M, Kurosaka M. Intervertebral disc and macrophage interaction induces mechanical hyperalgesia and cytokine production in a herniated disc model in rats. Arthritis Rheum. 2012;64(8):2601–2610. doi:10.1002/art.34456.
  • Xiao L, Huang R, Zhang Y, Li T, Dai J, Nannapuneni N, Chastanet TR, Chen M, Shen FH, Jin L, Dorn HC, Li X. A new formyl peptide receptor-1 antagonist conjugated fullerene nanoparticle for targeted treatment of degenerative disc diseases. ACS Applied Materials & Interfaces. 2019;11(42):38405–38416. doi:10.1021/acsami.9b11783.
  • Innes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–2219. doi:10.1056/NEJMra1004965.
  • Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunology Reviews. 315–324, 2010;31.
  • Wipke BT, Allen PM. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. Journal of Immunology. 2001;167(3):1601–1608. doi:10.4049/jimmunol.167.3.1601.
  • Tanaka D, Kagari T, Doi H, Shimozato T. Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis. Immunology. 2006;119(2):195–202. doi:10.1111/j.1365-2567.2006.02424.x.
  • Bach M, Moon J, Moore R, Pan T, Nelson JL, Lood C. A neutrophil activation biomarker panel in prognosis and monitoring of patients with rheumatoid arthritis. Arthritis and Rheumatology. 2020;72(1):47–56. doi:10.1002/art.41062.
  • Eggleton P, Wang L, Penhallow J, Crawford N, Brown KA. Differences in oxidative response of subpopulations of neutrophils from healthy subjects and patients with rheumatoid arthritis. Annals of Rheumatic Disease. 1995;54(11):916–923. doi:10.1136/ard.54.11.916.
  • Duvvuri B, Baddour AA, Deane KD, Feser ML, Nelson JL, Demoruelle MK, Lood C. Mitochondrial N-formyl methionine peptides associate with disease activity as well as contribute to neutrophil activation in patients with rheumatoid arthritis. J Autoimmun. 2021;119:102630. doi:10.1016/j.jaut.2021.102630.
  • Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, Pare A, Rousseau M, Naika GS, Levesque T, Laflamme C, Marcoux G, Lambeau G, Farndale R, Pouliot M, Hamzeh-Cognasse H, Cognasse F, Garraud O, Nigrovic PA, Guderley H, Lacroix S, Thibault L, Semple JW, Gelb MH, Boilard E. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014;124(14):2173–2183. doi:10.1182/blood-2014-05-573543.
  • Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9(1):24–33. doi:10.1038/nrrheum.2012.190.
  • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–342. doi:10.1038/nature01658.
  • Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006;12(1):17–25. doi:10.1016/j.molmed.2005.11.007.
  • Miyamoto T. Regulation of Osteoclast differentiation and Bone Homeostasis. Anti-Aging Medicine. 1235–1241, 2012;17.
  • Taylor PC. Update on the diagnosis and management of early rheumatoid arthritis. Clinical Medicine (London). 2020;20(6):561–564. doi:10.7861/clinmed.2020-0727.
  • Kao W, Gu R, Jia Y, Wei X, Fan H, Harris J, Zhang Z, Quinn J, Morand EF, Yang YH. A formyl peptide receptor agonist suppresses inflammation and bone damage in arthritis. Br J Pharmacol. 2014;171(17):4087–4096. doi:10.1111/bph.12768.
  • Odobasic D, Jia Y, Kao W, Fan H, Wei X, Gu R, Ngo D, Kitching R, Holdsworth SR, Morand EF, Yang YH. Formyl peptide receptor activation inhibits the expansion of effector T cells and synovial fibroblasts and attenuates joint injury in models of rheumatoid arthritis. Int Immunopharmacol. 2018;61:140–149. doi:10.1016/j.intimp.2018.05.028.
  • Park JY, Park B, Lee M, Jeong YS, Lee HY, Sohn DH, Song JJ, Lee JH, Hwang JS, Bae Y-S. A novel antimicrobial peptide acting via formyl peptide receptor 2 shows therapeutic effects against rheumatoid arthritis. Sci Rep. 2018;8(1):14664. doi:10.1038/s41598-018-32963-5.
  • Crocetti L, Vergelli C, Guerrini G, Giovannoni MP, Kirpotina LN, Khlebnikov AI, Ghelardini C, Di Cesare Mannelli L, Lucarini E, Schepetkin IA, Quinn MT. Pyridinone derivatives as interesting formyl peptide receptor (FPR) agonists for the treatment of rheumatoid arthritis. Molecules. 2021;26(21):6583. doi:10.3390/molecules26216583.
  • Park MY, Kim HS, Lee M, Park B, Lee HY, Cho EB, Seong JY, Bae Y-S. FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2. Nature. 2017;7(1). doi:10.1038/s41598-017-15586-0.
  • Hu J, Li X, Chen Y, Han X, Li L, Yang Z, Duan L, Lu H, He Q. The protective effect of WKYMVm peptide on inflammatory osteolysis through regulating NF‐κB and CD9/gp130/STAT3 signaling pathway. J Cell Mol Med. 2020;24(2):1893–1905. doi:10.1111/jcmm.14885.
  • Zhao W, Hu J, He Q. The effect of the WKYMVm peptide on promoting mBMSC secretion of exosomes to induce M2 macrophage polarization through the FPR2 pathway. J Orthop Surg Res. 2021;16(1):171. doi:10.1186/s13018-021-02321-9.
  • Corliss BA, Azimi MS, Munson J, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;23(2):95–121. doi:10.1111/micc.12259.
  • Du Cheyne C, Tay H, De Spiegelaere W. The complex TIE between macrophages and angiogenesis. Anatomia, Histologia, Embriologia. 2020;49(5):585–596. doi:10.1111/ahe.12518.
  • Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone. 2015;70:19–27. doi:10.1016/j.bone.2014.09.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.