420
Views
6
CrossRef citations to date
0
Altmetric
Review

Role of pro-inflammatory interleukins in osteoarthritis: a narrative review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 238-247 | Received 05 Apr 2022, Accepted 30 Nov 2022, Published online: 21 Dec 2022

References

  • Man GS, Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life. 2014 Mar; 7(1):37–41.
  • Tam L-S, Gu J, Yu D. Pathogenesis of ankylosing spondylitis. Nat Rev Rheumatol. 2010 Jul; 6(7):399–405. doi:10.1038/nrrheum.2010.79.
  • Englund M, Guermazi A, Lohmander SL. The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin North Am. 2009 Jul; 47(4):703–712. doi:10.1016/j.rcl.2009.03.003.
  • McNulty AL, Miller MR, O’Connor SK, Guilak F. The effects of adipokines on cartilage and meniscus catabolism. Connect Tissue Res. 2011 Dec; 52(6):523–533. doi:10.3109/03008207.2011.597902.
  • Stone AV, Loeser RF, Vanderman KS, Long DL, Clark SC, Ferguson CM. Pro-inflammatory stimulation of meniscus cells increases production of matrix metalloproteinases and additional catabolic factors involved in osteoarthritis pathogenesis. Osteoarthritis Cartilage. 2014 Feb; 22(2):264–274. doi:10.1016/j.joca.2013.11.002.
  • Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis – results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage. 2005 May; 13(5):361–367. doi:10.1016/j.joca.2005.01.005.
  • Hill CL. Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis. 2007 Dec; 66(12):1599–1603. doi:10.1136/ard.2006.067470.
  • Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014; 2014:1–19. doi:10.1155/2014/561459.
  • Klein-Wieringa IR. Inflammatory cells in patients with end stage knee osteoarthritis: a comparison between the synovium and the infrapatellar fat pad. J Rheumatol. 2016 Apr; 43(4):771–778. doi:10.3899/jrheum.151068.
  • Aigner T, Rose J, Martin J, Buckwalter J. Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res. 2004 Jul; 7(2):134–145. doi:10.1089/1549168041552964.
  • de Lange-Brokaar BJE. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage. 2012 Dec; 20(12):1484–1499. doi:10.1016/j.joca.2012.08.027.
  • Rainbow R, Ren W, Zeng L. Inflammation and joint tissue interactions in OA: implications for potential therapeutic approaches. Arthritis. 2012 Jun; 2012:1–8. doi:10.1155/2012/741582.
  • Stannus O. Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthritis Cartilage. 2010 Nov; 18(11):1441–1447. doi:10.1016/j.joca.2010.08.016.
  • Jin X. Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015 Apr; 74(4):703–710. doi:10.1136/annrheumdis-2013-204494.
  • Partan RU, Hidayat R, Reagan M, Muthia P. The role of inflammatory cytokine and inflammatory regulator protein related to severity of joint effusion in osteoarthritis. Open Access Maced J Med Sci. 2020 May; 8(A):214–219. doi:10.3889/oamjms.2020.3799.
  • Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier J-P-P, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011; 7(1):33–42. doi:10.1038/nrrheum.2010.196.
  • Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010 Nov; 6(11):625–635. doi:10.1038/nrrheum.2010.159.
  • Zhang J-M, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007; 45(2):27–37. doi:10.1097/AIA.0b013e318034194e
  • Westacott CI. Tumor necrosis factor alpha can contribute to focal loss of cartilage in osteoarthritis. Osteoarthritis Cartilage. 2000 May; 8(3):213–221. doi:10.1053/joca.1999.0292.
  • Liew FY, Girard J-P, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016 Nov; 16(11):676–689. doi:10.1038/nri.2016.95.
  • Cayrol C, Girard J-P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol. 2014Dec; 31: 31–37. 10.1016/j.coi.2014.09.004.
  • Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity. 2015 Jun; 42(6):1005–1019. doi:10.1016/j.immuni.2015.06.006.
  • Smithgall MD, Comeau MR, Yoon B-RP, Kaufman D, Armitage R, Smith DE. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol. 2008 Aug; 20(8):1019–1030. doi:10.1093/intimm/dxn060.
  • Bourgeois E. The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. Eur J Immunol. 2009 Apr; 39(4):1046–1055. doi:10.1002/eji.200838575.
  • Bonilla WV. The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science. 2012 Feb; 335(6071):984–989. doi:10.1126/science.1215418.
  • Kearley J. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity. 2015 Mar; 42(3):566–579. doi:10.1016/j.immuni.2015.02.011.
  • Peine M, Marek RM, Löhning M. IL-33 in T Cell differentiation, function, and immune homeostasis. Trends Immunol. 2016 May; 37(5):321–333. doi:10.1016/j.it.2016.03.007.
  • Liu X. Structural insights into the interaction of IL-33 with its receptors. Proc Natl Acad Sci U S A. 2013 Sep; 110(37):14918–14923. doi:10.1073/pnas.1308651110.
  • Schmitz J. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005 Nov; 23(5):479–490. doi:10.1016/j.immuni.2005.09.015.
  • Liu X, Li M, Wu Y, Zhou Y, Zeng L, Huang T. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem Biophys Res Commun. 2009 Aug; 386(1):181–185. doi:10.1016/j.bbrc.2009.06.008.
  • Kim YH. Anti-IL-33 antibody has a therapeutic effect in a murine model of allergic rhinitis. Allergy. 2012 Feb; 67(2):183–190. doi:10.1111/j.1398-9995.2011.02735.x.
  • Qiu C. Anti-interleukin-33 inhibits cigarette smoke-induced lung inflammation in mice. Immunology. 2013 Jan; 138(1):76–82. doi:10.1111/imm.12020.
  • Peng G. Anti-IL-33 antibody has a therapeutic effect in an atopic dermatitis murine model induced by 2, 4-Dinitrochlorobenzene. Inflammation. 2018 Feb; 41(1):154–163. doi:10.1007/s10753-017-0673-7.
  • Li C. Experimental atopic dermatitis depends on IL-33R signaling via MyD88 in dendritic cells. Cell Death Dis. 2017 Apr; 8(4): e2735–e2735. 10.1038/cddis.2017.90
  • Akcay A. IL-33 Exacerbates acute kidney injury. J Am Soc Nephrol. 2011 Nov; 22(11):2057–2067. doi:10.1681/ASN.2010091011.
  • Park GH, Shinn HK, Kang J-H, Na WJ, Kim YH, Park C-S. Anti-interleukin-33 reduces ovalbumin-induced nephrotoxicity and expression of kidney injury molecule-1. Int Neurourol J. 2016 Jun; 20(2):114–121. doi:10.5213/inj.1632578.289.
  • Jiang H-R. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages: immunomodulation. Eur J Immunol. 2012 Jul; 42(7):1804–1814. doi:10.1002/eji.201141947.
  • Li M, Li Y, Liu X, Gao X, Wang Y. IL-33 blockade suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuroimmunol. 2012 Jun; 247(1–2):25–31. doi:10.1016/j.jneuroim.2012.03.016.
  • Matsuyama Y. Increased levels of interleukin 33 in sera and synovial fluid from patients with active rheumatoid arthritis. J Rheumatol. 2010 Jan; 37(1):18–25. doi:10.3899/jrheum.090492.
  • Hong Y-S. Measurement of Interleukin-33 (IL-33) and IL-33 Receptors (sST2 and ST2L) in Patients with Rheumatoid Arthritis. J Korean Med Sci. 2011; 26(9):1132. doi:10.3346/jkms.2011.26.9.1132.
  • Palmer G. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum. 2009 Mar; 60(3):738–749. doi:10.1002/art.24305.
  • He Z. Blockade of IL‐33 signalling attenuates osteoarthritis. Clin Transl Immunol. 2020 Jan; 9(10). 10.1002/cti2.1187
  • Hymowitz SG. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 2001 Oct; 20(19):5332–5341. doi:10.1093/emboj/20.19.5332.
  • Kawaguchi M. Identification of a novel cytokine, ML-1, and its expression in subjects with asthma. J Immunol. 2001 Oct; 167(8):4430–4435. doi:10.4049/jimmunol.167.8.4430.
  • Starnes T. Cutting Edge: iL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol. 2001 Oct; 167(8):4137–4140. doi:10.4049/jimmunol.167.8.4137.
  • Wright JF. The Human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J Immunol. 2008 Aug; 181(4):2799–2805. doi:10.4049/jimmunol.181.4.2799.
  • Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009 Apr; 27(1):485–517. doi:10.1146/annurev.immunol.021908.132710.
  • Miossec P. IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect. 2009 Apr; 11(5):625–630. doi:10.1016/j.micinf.2009.04.003.
  • Sutton C, Brereton C, Keogh B, Mills KHG, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17–producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006 Jul; 203(7):1685–1691. doi:10.1084/jem.20060285.
  • Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KHG. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009 Aug; 31(2):331–341. doi:10.1016/j.immuni.2009.08.001.
  • Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest. 2006 May; 116(5):1218–1222. doi:10.1172/JCI28508. PMID: 16670765; PMCID: PMC1451213.
  • Gaffen S, Jain R, Garg A, Cua DJ. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014; 14(9):585–600. doi:10.1038/nri3707.
  • Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci. 2003 May; 100(10):5986–5990. doi:10.1073/pnas.1035999100.
  • Mimpen JY. Interleukin-17A causes osteoarthritis-like transcriptional changes in human osteoarthritis-derived chondrocytes and synovial fibroblasts in vitro. Front Immunol. 2021 May; 12:676173. doi:10.3389/fimmu.2021.676173.
  • Wei M. Correlation of IL-17 level in synovia and severity of knee osteoarthritis. Med Sci Monit. 2015; 21:1732–1736. doi:10.12659/MSM.893771.
  • Mohamed SA, Neseem NO, Metwally SS, Dein M Farag SE. IL-17 in primary knee osteoarthritis and its relation with severity of the disease. Int J Clin Rheumatol. 2018; 13(6). doi:10.4172/1758-4272.1000212.
  • Askari A. Increased serum levels of IL-17A and IL-23 are associated with decreased vitamin D3 and increased pain in osteoarthritis. PLOS ONE. 2016 Nov; 11(11):e0164757. doi:10.1371/journal.pone.0164757.
  • Wang G-L, Mu W-D. IL-17 expression in synovial fluid and synovial membrane in patients with knee osteoarthritis. Int J Clin Exp Med. 2017; 10(2):3400–3405.
  • Honorati MC, Bovara M, Cattini L, Piacentini A, Facchini A. Contribution of interleukin 17 to human cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage. 2002 Oct; 10(10):799–807. doi:10.1053/joca.2002.0829.
  • Magyari L. Interleukins and interleukin receptors in rheumatoid arthritis: research, diagnostics and clinical implications. World J Orthop. 2014; 5(4):516. doi:10.5312/wjo.v5.i4.516
  • McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019 Apr; 50(4):892–906. doi:10.1016/j.immuni.2019.03.021.
  • Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL. IL-17 receptor–based signaling and implications for disease. Nat Immunol. 2019 Dec; 20(12):1594–1602. doi:10.1038/s41590-019-0514-y.
  • Tanaka T, Narazaki M, Kishimoto T. Therapeutic Targeting of the Interleukin-6 Receptor. Annu Rev Pharmacol Toxicol. 2012 Feb; 52(1):199–219. doi:10.1146/annurev-pharmtox-010611-134715.
  • Latourte A. Systemic inhibition of IL-6/stat3 signalling protects against experimental osteoarthritis. Ann Rheum Dis. 2017 Apr; 76(4):748–755. doi:10.1136/annrheumdis-2016-209757.
  • Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage. 2009 Apr; 17(4):473–481. doi:10.1016/j.joca.2008.09.007.
  • Schelbergen RFP. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 2012 May; 64(5):1477–1487. doi:10.1002/art.33495.
  • Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2012 Feb; 122(4):143–159. doi:10.1042/CS20110340.
  • Krenn V. Meniskusdegenerationsscore und NITEGE-Expression: Immunhistochemischer NITEGE-Nachweis in der schwergradigen Meniskusdegeneration. Orthop. 2010 May; 39(5):475–485. doi:10.1007/s00132-010-1606-4.
  • Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 2006 Nov; 13(11):1235–1242. doi:10.1016/j.chembiol.2006.09.018.
  • Zhu Z. Cross-sectional and longitudinal associations between serum inflammatory cytokines and knee bone marrow lesions in patients with knee osteoarthritis. Osteoarthritis Cartilage. 2017 Apr; 25(4):499–505. doi:10.1016/j.joca.2016.10.024.
  • Yang X, Zheng SG. Interleukin-22: a likely target for treatment of autoimmune diseases. Autoimmun Rev. 2014 Jun; 13(6):615–620. doi:10.1016/j.autrev.2013.11.008.
  • Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov. 2014 Jan; 13(1):21–38. doi:10.1038/nrd4176.
  • Yi C, Yi Y, Wei J, Jin Q, Li J, Sacitharan PK. Targeting IL-22 and IL-22R protects against experimental osteoarthritis. Cell Mol Immunol. 2021 May; 18(5):1329–1331. doi:10.1038/s41423-020-0491-y.
  • Kennedy MK. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med. 2000 Mar; 191(5):771–780. doi:10.1084/jem.191.5.771.
  • Marks-Konczalik J. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci U S A. 2000 Oct; 97(21):11445–11450. doi:10.1073/pnas.200363097.
  • Sun J-M, Sun L-Z, Liu J, Su B, Shi L. Serum interleukin-15 levels are associated with severity of pain in patients with knee osteoarthritis. Dis Markers. 2013; 35(3):203–206. doi:10.1155/2013/176278
  • Baslund B. Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study. Arthritis Rheum. 2005 Sep; 52(9):2686–2692. doi:10.1002/art.21249.
  • Waldmann TA. Targeting the interleukin-15/interleukin-15 receptor system in inflammatory autoimmune diseases. Arthritis Res Ther. 2004; 6(4):174–177. doi:10.1186/ar1202
  • Thurkow EW. Increased expression of IL-15 in the synovium of patients with rheumatoid arthritis compared with patients with Yersinia-induced arthritis and osteoarthritis. J Pathol. 1997 Apr; 181(4):444–450. doi:10.1002/(SICI)1096-9896(199704)181:4<444:AID-PATH778>3.0.CO;2-O.
  • Aringer M. Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatol Oxf Engl. 2001 Aug; 40(8):876–881. doi:10.1093/rheumatology/40.8.876.
  • Baranda L. IL-15 and IL-15R in leucocytes from patients with systemic lupus erythematosus. Rheumatol Oxf Engl. 2005 Dec; 44(12):1507–1513. doi:10.1093/rheumatology/kei083.
  • Woessner JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May; 5(8):2145–2154. doi:10.1096/fasebj.5.8.1850705.
  • Warner SC IL-15 and IL15RA in osteoarthritis: association with symptoms and protease production, but not structural severity. Front Immunol. 2020;11:1385.
  • Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol. 2010 Dec; 229(1–2):26–50. doi:10.1016/j.jneuroim.2010.08.013.
  • Dinarello CA. Biology of interleukin 1. FASEB J. 1988 Feb; 2(2):108–115. doi:10.1096/fasebj.2.2.3277884.
  • Almog T. Knockdown of interleukin-1α does not attenuate LPS-induced production of interleukin-1β in mouse macrophages. Cytokine. 2015 May; 73(1):138–143. doi:10.1016/j.cyto.2015.01.029.
  • Hannum CH. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature. 1990 Jan; 343(6256):336–340. doi:10.1038/343336a0.
  • Singh AK, Fechtner S, Chourasia M, Sicalo J, Ahmed S. Critical role of IL-1α in IL-1β-induced inflammatory responses: cooperation with NF-κBp65 in transcriptional regulation. FASEB J. 2019 Feb; 33(2):2526–2536. doi:10.1096/fj.201801513R.
  • van Dalen SCM. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis. Osteoarthritis Cartilage. 2017 Mar; 25(3):385–396. doi:10.1016/j.joca.2016.09.009.
  • Nasi S, Ea H-K, So A, Busso N. Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1α and -1β, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front Pharmacol. 2017; 8:282. doi:10.3389/fphar.2017.00282.
  • Kobayashi M. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 2005 Jan; 52(1):128–135. doi:10.1002/art.20776.
  • ElKassar N, Gress RE. An overview of IL-7 biology and its use in immunotherapy. J Immunotoxicol. 2010 Mar; 7(1):1–7. doi:10.3109/15476910903453296.
  • Mazzucchelli R, Durum SK. Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol. 2007 Feb; 7(2):144–154. doi:10.1038/nri2023.
  • Ziegler SF, Liu Y-J. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat Immunol. 2006 Jul; 7(7):709–714. doi:10.1038/ni1360.
  • Willis CR. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis. J Inflamm. 2012; 9(1):39. doi:10.1186/1476-9255-9-39.
  • Stone AV. Osteoarthritic changes in vervet monkey knees correlate with meniscus degradation and increased matrix metalloproteinase and cytokine secretion. Osteoarthritis Cartilage. 2015 Oct; 23(10):1780–1789. doi:10.1016/j.joca.2015.05.020.
  • Lin H. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science. 2008 May; 320(5877):807–811. doi:10.1126/science.1154370.
  • Chihara T. IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ. 2010 Dec; 17(12):1917–1927. doi:10.1038/cdd.2010.60.
  • Wei S. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol. 2010 Sep; 88(3):495–505. doi:10.1189/jlb.1209822.
  • Hwang S-J. Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther. 2012 Jan; 14(1):R14. doi:10.1186/ar3693.
  • Chemel M. Interleukin 34 expression is associated with synovitis severity in rheumatoid arthritis patients. Ann Rheum Dis. 2012 Jan; 71(1):150–154. doi:10.1136/annrheumdis-2011-200096.
  • Tian Y, Shen H, Xia L, Lu J. Elevated serum and synovial fluid levels of interleukin-34 in rheumatoid arthritis: possible association with disease progression via interleukin-17 production. J Interferon Cytokine Res. 2013 Jul; 33(7):398–401. doi:10.1089/jir.2012.0122.
  • Moon S-J, Hong Y-S, Ju JH, Kwok S-K, Park S-H, Min J-K. Increased levels of interleukin 34 in serum and synovial fluid are associated with rheumatoid factor and anticyclic citrullinated peptide antibody titers in patients with rheumatoid arthritis. J Rheumatol. 2013 Nov; 40(11):1842–1849. doi:10.3899/jrheum.130356.
  • Wang S-L, Zhang R, Hu K-Z, Li M-Q, Li Z-C. Interleukin-34 Synovial fluid was associated with knee osteoarthritis severity: a cross-sectional study in knee osteoarthritis patients in different radiographic stages. Dis Markers. 2018; 2018:2095480. doi:10.1155/2018/2095480.
  • Udomsinprasert W, Jinawath A, Teerawattanapong N, Honsawek S. Interleukin-34 overexpression mediated through tumor necrosis factor-alpha reflects severity of synovitis in knee osteoarthritis. Sci Rep. 2020 May; 10(1):7987. doi:10.1038/s41598-020-64932-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.