240
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Dependence of crack shape in loaded articular cartilage on the collagenous structure

, , , , &
Pages 294-306 | Received 12 May 2022, Accepted 03 Jan 2023, Published online: 28 Feb 2023

References

  • Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. 2006. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 20(10):739–744. doi:10.1097/01.bot.0000246468.80635.ef.
  • Houck DA. 2018. Do focal chondral defects of the knee increase the risk for progression to osteoarthritis? a review of the literature. Orthop J Sports Med. 6(10):232596711880193. doi:10.1177/2325967118801931.
  • Han G, Chowdhury U, Eriten M, Henak CR. 2021. Relaxation capacity of cartilage is a critical factor in rate- and integrity-dependent fracture. Sci Rep. 11(1):9527. doi:10.1038/s41598-021-88942-w.
  • Moo EK. 2021. Deformation behaviors and mechanical impairments of tissue cracks in immature and mature cartilages. J Orthop Res. 40(9):2103–2112. doi:10.1002/jor.25243. n/a.
  • Moo EK, Abu Osman NA, Pingguan-Murphy B. 2011. The metabolic dynamics of cartilage explants over a long-term culture period. Clin Sao Paulo. 66(8):1431–1436. doi:10.1590/S1807-59322011000800021.
  • Orozco GA. 2021. Prediction of local fixed charge density loss in cartilage following ACL injury and reconstruction: a computational proof-of-concept study with MRI follow-up. J Orthop Res. 39(5):1064–1081. doi:10.1002/jor.24797.
  • Komeili A, Chau W, Herzog W. 2019. Effects of macro-cracks on the load bearing capacity of articular cartilage. Biomech Model Mechanobiol. 18(5):1371–1381. doi:10.1007/s10237-019-01149-x.
  • Myller KAH. 2019. Computational evaluation of altered biomechanics related to articular cartilage lesions observed in vivo. J Orthop Res. 37(5):1042–1051. doi:10.1002/jor.24273.
  • Lewis JL. 2003. Cell death after cartilage impact occurs around matrix cracks. J Orthop Res off Publ Orthop Res Soc. 21(5):881–887. doi:10.1016/S0736-0266(03)00039-1.
  • Bourne DA, Moo EK, Herzog W. 2015. Cartilage and chondrocyte response to extreme muscular loading and impact loading: can in vivo pre-load decrease impact-induced cell death? Clin Biomech. 30(6):537–545. doi:10.1016/j.clinbiomech.2015.04.009.
  • Moo EK. 2013. The properties of chondrocyte membrane reservoirs and their role in impact-induced cell death. Biophys J. 105(7):1590–1600. doi:10.1016/j.bpj.2013.08.035.
  • Southan J, McHugh E, Walker H, Ismail HM. Metabolic signature of articular cartilage following mechanical injury: an integrated transcriptomics and metabolomics analysis. Front Mol Biosci. 2020;7. doi:10.3389/fmolb.2020.592905.
  • Biswal S. 2002. Risk factors for progressive cartilage loss in the knee. Arthritis Rheum. 46(11):2884–2892. doi:10.1002/art.10573.
  • Cicuttini F. 2005. Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum. 52(7):2033–2039. doi:10.1002/art.21148.
  • Khan IM, Gilbert SJ, Singhrao SK, Duance VC, Archer CW. 2008. Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater. 16:26–39. doi:10.22203/eCM.v016a04.
  • Wang Y. 2006. Factors affecting progression of knee cartilage defects in normal subjects over 2 years. Rheumatology. 45(1):79–84. doi:10.1093/rheumatology/kei108.
  • Moo EK Collagen fibres determine the crack morphology in articular cartilage. Acta Biomater. 2021;126:301–314.
  • Brama PA. 2000. Topographical mapping of biochemical properties of articular cartilage in the equine fetlock joint. Equine Vet J. 32(1):19–26. doi:10.2746/042516400777612062.
  • Julkunen P. 2009. Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage. Osteoarthritis Cartilage. 17(12):1628–1638. doi:10.1016/j.joca.2009.07.002.
  • Mäkelä JTA. 2014. Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection. Osteoarthritis Cartilage. 22(6):869–878. doi:10.1016/j.joca.2014.04.010.
  • Oinas J. 2018. Composition, structure and tensile biomechanical properties of equine articular cartilage during growth and maturation. Sci Rep. 8(1):1–12. doi:10.1038/s41598-018-29655-5.
  • Rieppo J. 2009. Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. Osteoarthritis Cartilage. 17(4):448–455. doi:10.1016/j.joca.2008.09.004.
  • van Turnhout MC. 2010. Postnatal development of collagen structure in ovine articular cartilage. BMC Dev Biol. 10(1):62. doi:10.1186/1471-213X-10-62.
  • Ebrahimi M. 2020. Structure–function relationships of healthy and osteoarthritic human tibial cartilage: experimental and numerical investigation. Ann Biomed Eng. 48(12):2887–2900. doi:10.1007/s10439-020-02559-0.
  • Changoor A. 2011. A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair. Osteoarthritis Cartilage. 19(1):126–135. doi:10.1016/j.joca.2010.10.010.
  • Alhadlaq HA, Xia Y, Hansen FM, Les CM, Lust G. 2007. Morphological changes in articular cartilage due to static compression: polarized light microscopy study. Connect Tissue Res. 48(2):76–84. doi:10.1080/03008200601130950.
  • Mehta SB, Shribak M, Oldenbourg R. 2013. Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity. J Opt. 15(9):094007. doi:10.1088/2040-8978/15/9/094007.
  • Rieppo J. 2007. Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage. Microsc Res Tech. 71(4):279–287. doi:10.1002/jemt.20551.
  • Julkunen P. 2010. Maturation of collagen fibril network structure in tibial and femoral cartilage of rabbits. Osteoarthritis Cartilage. 18(3):406–415. doi:10.1016/j.joca.2009.11.007.
  • Below S, Arnoczky SP, Dodds J, Kooima C, Walter N. 2002. The split-line pattern of the distal femur. Arthrosc J Arthrosc Relat Surg. 18(6):613–617. doi:10.1053/jars.2002.29877.
  • Hunziker EB, Herrmann W, Schenk RK. 1982. Improved cartilage fixation by ruthenium hexammine trichloride (RHT): a prerequisite for morphometry in growth cartilage. J Ultrastruct Res. 81(1):1–12. doi:10.1016/S0022-5320(82)90036-3.
  • Moo EK, Herzog W. 2017. Unfolding of membrane ruffles of in situ chondrocytes under compressive loads. J Orthop Res. 35(2):304–310. doi:10.1002/jor.23260.
  • Shribak M, Oldenbourg R. 2003. Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Appl Opt. 42(16):3009–3017. doi:10.1364/AO.42.003009.
  • Schindelin J. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9(7):676–682. doi:10.1038/nmeth.2019.
  • Eiter T, Mannila H. 1994. Computing discrete frechet distance. Tech Rep. 8:1– 7.
  • Gannon AR, Nagel T, Bell AP, Avery NC, Kelly DJ. 2015. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network. Eur Cell Mater. 29: 105–121. doi:10.22203/eCM.v029a09. discussion 121-123.
  • Moo EK, Ebrahimi M, Sibole SC, Tanska P, Korhonen RK. 2022. The intrinsic quality of proteoglycans, but not collagen fibres, degrades in osteoarthritic cartilage. Acta Biomater. 153:178–189. doi:10.1016/j.actbio.2022.09.002.
  • Li H, Li J, Yu S, Wu C, Zhang W. 2021. The mechanical properties of tibiofemoral and patellofemoral articular cartilage in compression depend on anatomical regions. Sci Rep. 11(1):6128. doi:10.1038/s41598-021-85716-2.
  • Kansu L, Aydın E, Akkaya H, Avcı S, Akalın N. 2017. Shrinkage of nasal mucosa and cartilage during formalin fixation. Balk Med J. 34(5):458–463. doi:10.4274/balkanmedj.2015.1470.
  • Flachsmann R, Broom ND, Hardy AE. 2001. Deformation and rupture of the articular surface under dynamic and static compression. J Orthop Res. 19(6):1131–1139. doi:10.1016/S0736-0266(01)00049-3.
  • Sadeghi H, Lawless BM, Espino DM, Shepherd DET. 2018. Effect of frequency on crack growth in articular cartilage. J Mech Behav Biomed Mater. 77:40–46. doi:10.1016/j.jmbbm.2017.08.036.
  • Thompson R, Oegema T, Lewis J, Wallace L. 1991. Osteoarthrotic changes after acute transarticular load. An animal model. J Bone Jt Surg. 73(7):990–1001. doi:10.2106/00004623-199173070-00005.
  • Thompson RCJ. 1993. Scanning electron-microscopic and magnetic resonance-imaging studies of injuries to the patellofemoral joint after acute transarticular loading. JBJS. 75(5):704–713. doi:10.2106/00004623-199305000-00010.
  • Han S-K, Colarusso P, Herzog W. 2009. Confocal microscopy indentation system for studying in situ chondrocyte mechanics. Med Eng Phys. 31(8):1038–1042. doi:10.1016/j.medengphy.2009.05.013.
  • Komeili A, Abusara Z, Federico S, Herzog W. 2018. A compression system for studying depth-dependent mechanical properties of articular cartilage under dynamic loading conditions. Med Eng Phys. 60:103–108. doi:10.1016/j.medengphy.2018.07.004.
  • Moo EK, Sibole SC, Han SK, Herzog W. 2018. Three-dimensional micro-scale strain mapping in living biological soft tissues. Acta Biomater. 70:260–269. doi:10.1016/j.actbio.2018.01.048.
  • Abusara Z Chondrocyte morphology as an indicator of collagen network integrity. Connect Tissue Res. 2021;0:1–10.
  • Moo EK. 2014. Extracellular matrix integrity affects the mechanical behaviour of in-situ chondrocytes under compression. J Biomech. 47(5):1004–1013. doi:10.1016/j.jbiomech.2014.01.003.
  • Chery DR Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis. Acta Biomater. 2020;111:267–278.
  • Sibole SC, Moo EK, Federico S, Herzog W. 2022. The protective function of directed asymmetry in the pericellular matrix enveloping chondrocytes. Ann Biomed Eng. 50(1):39–55. doi:10.1007/s10439-021-02900-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.