139
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Tenogenic differentiation of human tendon-derived stem cells induced by long non-coding RNA LINCMD1 via miR-342-3p/EGR1 axis

, , , &
Pages 479-490 | Received 02 Dec 2022, Accepted 16 May 2023, Published online: 07 Jun 2023

References

  • Magnusson SP, Kjaer M. The impact of loading, unloading, ageing and injury on the human tendon. J Physiol. 2019;597(5):1283–1298. doi:10.1113/JP275450.
  • Titan AL, Foster DS, Chang J, Longaker MT. Flexor tendon: development, healing, adhesion formation, and contributing growth factors. Plast Reconstr Surg. 2019;144(4):639e–647e. doi:10.1097/PRS.0000000000006048.
  • Wei B, Lu J. Characterization of tendon-derived stem cells and rescue tendon injury. Stem Cell Rev Rep. 2021;17(5):1534–1551. doi:10.1007/s12015-021-10143-9.
  • Shengnan Q, Bennett S, Wen W, Aiguo L, Jiake X. The role of tendon derived stem/progenitor cells and extracellular matrix components in the bone tendon junction repair. Bone. 2021;153:116172. doi:10.1016/j.bone.2021.116172.
  • Panni S, Lovering RC, Porras P, Orchard S. Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech. 2020;1863(6):194417. doi:10.1016/j.bbagrm.2019.194417.
  • Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62. doi:10.1038/nrg.2015.10.
  • Constanty F, Shkumatava A. lncRnas in development and differentiation: from sequence motifs to functional characterization. Development. 2021;148(1). doi:10.1242/dev.182741.
  • Sousa-Franco A, Rebelo K, da Rocha ST, Bernardes de Jesus B. LncRNAs regulating stemness in aging. Aging Cell. 2019;18(1):e12870. doi:10.1111/acel.12870.
  • Ge Z, Tang H, Lyu J, Zhou B, Yang M, Tang K. Conjoint analysis of lncRNA and mRNA expression in rotator cuff tendinopathy. Ann Transl Med. 2020;8(6):335. doi:10.21037/atm.2020.02.149.
  • Ilaltdinov AW, Gong Y, Leong DJ, Gruson KI, Zheng D, Fung DT. Advances in the development of gene therapy, noncoding RNA, and exosome-based treatments for tendinopathy. Ann N Y Acad Sci. 2021;1490(1):3–12. doi:10.1111/nyas.14382.
  • Liu YJ, Wang HJ, Xue ZW, Cheang LH, Tam MS, Li RW. Long noncoding RNA H19 accelerates tenogenic differentiation by modulating miR-140-5p/VEGFA signaling. Eur J Histochem. 2021;65(3). doi:10.4081/ejh.2021.3297.
  • Yu Y, Chen Y, Zhang X, Lu X, Hong J, Guo X. Knockdown of lncRNA KCNQ1OT1 suppresses the adipogenic and osteogenic differentiation of tendon stem cell via downregulating miR-138 target genes PPARγ and RUNX2. Cell Cycle. 2018;17(19–20):2374–2385. doi:10.1080/15384101.2018.1534510.
  • Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–369. doi:10.1016/j.cell.2011.09.028.
  • Legnini I, Morlando M, Mangiavacchi A, Fatica A, Bozzoni I. A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell. 2014;53(3):506–514. doi:10.1016/j.molcel.2013.12.012.
  • Hitachi K, Nakatani M, Funasaki S, Hijikata I, Maekawa M, Honda M. Expression Levels of Long Non-Coding RNAs Change in Models of Altered Muscle Activity and Muscle Mass. Int J Mol Sci. 2020;21(5):1628. doi:10.3390/ijms21051628.
  • Li Y, Shi H, Chen R, Zhou S, Lei S, She Y. Role of miRnas and lncRnas in dexamethasone-induced myotube atrophy in vitro. Exp Ther Med. 2021;21(2):146. doi:10.3892/etm.2020.9577.
  • Eftedal R, Vrgoc G, Jotanovic Z, Dembic Z. Alternative interleukin 17A/F locus haplotypes are associated with increased risk to hip and knee osteoarthritis. J Orthop Res. 2019;37(9):1972–1978. doi:10.1002/jor.24334.
  • Lu YF, Liu Y, Fu WM, Xu J, Wang B, Sun YX. Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-β1 signaling. FASEB J. 2017;31(3):954–964. doi:10.1096/fj.201600722R.
  • Wang B, Guo J, Feng L, Suen CW, Fu WM, Zhang JF. MiR124 suppresses collagen formation of human tendon derived stem cells through targeting egr1. Exp Cell Res. 2016;347(2):360–366. doi:10.1016/j.yexcr.2016.08.018.
  • Han W, Wang B, Liu J, Chen L. The p16/miR-217/EGR1 pathway modulates age-related tenogenic differentiation in tendon stem/progenitor cells. Acta Biochim Biophys Sin (Shanghai). 2017;49(11):1015–1021. doi:10.1093/abbs/gmx104.
  • Ding L, Wang M, Qin S, Xu L. The roles of MicroRNAs in tendon healing and regeneration. Front Cell Dev Biol. 2021;9:687117. doi:10.3389/fcell.2021.687117.
  • Huang M, Qing Y, Shi Q, Cao Y, Song K. MiR-342-3p elevates osteogenic differentiation of umbilical cord mesenchymal stem cells via inhibiting Sufu in vitro. Biochem Biophys Res Commun. 2017;491(3):571–577. doi:10.1016/j.bbrc.2017.07.163.
  • Han Y, Zhang K, Hong Y, Wang J, Liu Q, Zhang Z. MiR-342-3p promotes osteogenic differentiation via targeting ATF3. FEBS Lett. 2018;592(24):4051–4065. doi:10.1002/1873-3468.13282.
  • Havis E, Duprez D. EGR1 transcription factor is a multifaceted regulator of matrix production in tendons and other connective tissues. Int J Mol Sci. 2020;21(5):1664. doi:10.3390/ijms21051664.
  • Wu YF, Wang HK, Chang HW, Sun J, Sun JS, Chao YH. High glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway. null. 2017;7(1):44199. doi:10.1038/srep44199.
  • Tao X, Liu J, Chen L, Zhou Y, Tang K. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair. Cell Physiol Biochem. 2015;35(2):699–709. doi:10.1159/000369730.
  • Guerquin MJ, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin MA. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest. 2013;123(8):3564–3576. doi:10.1172/JCI67521.
  • Ma L, Cao J, Liu L, Du Q, Li Z, Zou D. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 2019;47(5):2699. doi:10.1093/nar/gkz073.
  • Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–97. doi:10.1093/nar/gkt1248.
  • Xu K, Zhang Z, Chen M, Moqbel SAA, He Y, Ma C. Nesfatin-1 Promotes the Osteogenic Differentiation of Tendon-Derived Stem Cells and the Pathogenesis of Heterotopic Ossification in Rat Tendons via the mTOR Pathway. Front Cell Dev Biol. 2020;8:547342.
  • Iwakawa HO, Tomari Y. The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol. 2015;25(11):651–665. doi:10.1016/j.tcb.2015.07.011.
  • Zhang MY, Calin GA, Yuen KS, Jin DY, Chim CS. Epigenetic silencing of miR-342-3p in B cell lymphoma and its impact on autophagy. Clin Epigenetics. 2020;12(1):150. doi:10.1186/s13148-020-00926-1.
  • Komoll RM, Hu Q, Olarewaju O, von Döhlen L, Yuan Q, Xie Y. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma. J Hepatol. 2021;74(1):122–134. doi:10.1016/j.jhep.2020.07.039.
  • Han X, Niu C, Zuo Z, Wang Y, Yao L, Sun L. MiR-342-3p inhibition promotes cell proliferation and invasion by directly targeting ID4 in pre-eclampsia. J Obstet Gynaecol Res. 2020;46(1):49–57. doi:10.1111/jog.14150.
  • Fu Y, Hu X, Zheng C, Sun G, Xu J, Luo S. Intrahippocampal miR-342-3p inhibition reduces β-amyloid plaques and ameliorates learning and memory in Alzheimer’s disease. Metab Brain Dis. 2019;34(5):1355–1363. doi:10.1007/s11011-019-00438-9.
  • Wang B, Cao C, Han D, Bai J, Guo J, Guo Q. Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair. Biomed Pharmacother. 2021;142:112056.
  • Jiang Y, Zhou J, Zhao J, Zhang H, Li L, Li H. The U2AF2/circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. J Exp Clin Cancer Res. 2020;39(1):182. doi:10.1186/s13046-020-01691-y.
  • Xu C, Sun W, Liu J, Pu H, Li Y. MiR-342-3p inhibits LCSC oncogenicity and cell stemness through HDAC7/PTEN axis. Inflamm Res. 2021;71(1):107–117. doi:10.1007/s00011-021-01521-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.