83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Neferine alleviates ovariectomy-induced osteoporosis by enhancing osteogenic differentiation of bone marrow mesenchymal stem cells via regulation of the p38MAPK pathway

, , , , &
Pages 253-264 | Received 13 Mar 2024, Accepted 29 Apr 2024, Published online: 16 May 2024

References

  • Häussler B, Gothe H, Göl D, Glaeske G, Pientka L, Felsenberg D. Epidemiology, treatment and costs of osteoporosis in Germany–the BoneEVA Study. Osteoporos Int. 2007 Jan;18(1):77–84. doi:10.1007/s00198-006-0206-y
  • Chen X, Hu Y, Geng Z, Su J. The “three in one” bone repair strategy for osteoporotic fractures. Front Endocrinol (Lausanne). 2022;13:910602. doi:10.3389/fendo.2022.910602
  • Yoo JE, Shin DW, Han K, Kim D, Yoon JW, Lee DY. Association of female reproductive factors with incidence of fracture among postmenopausal women in Korea. JAMA Netw Open. Jan 4 2021;4(1):e2030405. doi:10.1001/jamanetworkopen.2020.30405
  • Long G, Liu C, Liang T, Zhang Z, Qin Z, Zhan X. Predictors of osteoporotic fracture in postmenopausal women: a meta-analysis. J Orthop Surg Res. Aug 5 2023;18(1):574. doi:10.1186/s13018-023-04051-6
  • John AA, Xie J, Yang YS, Kim JM, Lin CJ, Ma H, Gao GP, Shim JH. AAV-mediated delivery of osteoblast/osteoclast-regulating miRnas for osteoporosis therapy. Mol Ther Nucleic Acids. Sep 13 2022;29:296–311. doi:10.1016/j.omtn.2022.07.008
  • Mahmoud NS, Mohamed MR, Ali MAM, Aglan HA, Amr KS, Ahmed HH. Osteoblast-based therapy-A new approach for bone repair in osteoporosis: pre-clinical setting. Tissue Eng Regen Med. 2020 Jun;17(3):363–373. doi:10.1007/s13770-020-00249-5
  • Park JB, Kim I, Lee W, Kim H. Evaluation of the regenerative capacity of stem cells combined with bone graft material and collagen matrix using a rabbit calvarial defect model. J Periodontal Implant Sci. 2023 Dec;53(6):467–477. doi:10.5051/jpis.2204880244
  • Duan J, Li H, Wang C, Yao J, Jin Y, Zhao J, Zhang Y, Liu M, Sun H. BMSC-derived extracellular vesicles promoted osteogenesis via Axin2 inhibition by delivering MiR-16-5p. Int Immunopharmacol. 2023 Jul;120:110319. doi:10.1016/j.intimp.2023.110319
  • Li D, Yuan Q, Xiong L, Li A, Xia Y. The miR-4739/DLX3 axis modulates bone marrow-derived mesenchymal stem cell (BMSC) osteogenesis affecting osteoporosis progression. Front Endocrinol (Lausanne). 2021;12:703167. doi:10.3389/fendo.2021.703167
  • Liu H, Yi X, Tu ST, Cheng C, Luo J. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12. Mol Cell Endocrinol. Jan 15 2021;520:111074. doi:10.1016/j.mce.2020.111074
  • Lin ZY, He HB, Wang M, Liang JY. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif. 2019 Nov;52(6):e12688. doi:10.1111/cpr.12688
  • Yu W, Wang HL, Zhang J, Yin C. The effects of epigenetic modifications on bone remodeling in age-related osteoporosis. Connect Tissue Res. 2023 Mar;64(2):105–116. doi:10.1080/03008207.2022.2120392
  • Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol. 2016;4:40. doi:10.3389/fcell.2016.00040
  • Lin XX, Wang YX, Guo XL, Li C, Wu KF, Wang SY, Yu XJ. Shikonin promotes rat periodontal bone defect repair and osteogenic differentiation of BMSCs by p38 MAPK pathway. Odontology. 2023 Jul;111(3):649–657. doi:10.1007/s10266-022-00774-w
  • Marthandam Asokan S, Mariappan R, Muthusamy S, Velmurugan BK. Pharmacological benefits of neferine - a comprehensive review. Life Sci. Apr 15 2018;199:60–70. doi:10.1016/j.lfs.2018.02.032
  • Nazim UM, Yin H, Park SY. Neferine treatment enhances the TRAIL-induced apoptosis of human prostate cancer cells via autophagic flux and the JNK pathway. Int J Oncol. 2020 May;56(5):1152–1161. doi:10.3892/ijo.2020.5012
  • Li SJ, Zhang YY, Zhang J, Yu B, Wang WR, Jia BS, Chang JT. Neferine exerts ferroptosis-inducing effect and antitumor effect on thyroid cancer through Nrf2/HO-1/NQO1 inhibition. J Oncol. 2022;2022:1–16. doi:10.1155/2022/7933775
  • Lohanathan BP, Rathinasamy B, Huang C-Y, Viswanadha VP. Neferine attenuates doxorubicin-induced fibrosis and hypertrophy in H9c2 cells. J Biochem Mol Toxicol. 2022 Jul;36(7):e23054. doi:10.1002/jbt.23054
  • Chiu KM, Hung YL, Wang SJ, Tsai YJ, Wu NL, Liang CW, Chang DC, Hung CF. Anti-allergic and anti-inflammatory effects of Neferine on RBL-2H3 cells. Int J Mol Sci. Oct 12 2021;22(20):10994. doi:10.3390/ijms222010994
  • Wang MY, Zhang SS, An MF, Xia YF, Fan MS, Sun Z, Zhang LJ, Zhao Y, Sheng J, Wang XJ, et al. Neferine ameliorates nonalcoholic steatohepatitis through regulating AMPK pathway. Phytomedicine. 2023 Jun;114:154798. doi:10.1016/j.phymed.2023.154798
  • Cevik M, Gobeka HH, Aydemir O. Effects of neferine on retinal tissue in experimental diabetic rat model. Int Ophthalmol. 2023 Jan;43(1):249–260. doi:10.1007/s10792-022-02424-0
  • Erdogan S, Turkekul K. Neferine inhibits proliferation and migration of human prostate cancer stem cells through p38 MAPK/JNK activation. J Food Biochem. 2020 Jul;44(7):e13253. doi:10.1111/jfbc.13253
  • Xie J, Chen MH, Ying CP, Chen MY. Neferine induces p38 MAPK/JNK1/2 activation to modulate melanoma proliferation, apoptosis, and oxidative stress. Ann Transl Med. 2020 Dec;8(24):1643. doi:10.21037/atm-20-7201
  • Chen SN, Chu BX, Chen Y, Cheng X, Guo D, Chen LH, Wang JC, Li ZY, Hong ZH. Neferine suppresses osteoclast differentiation through suppressing NF-κB signal pathway but not MAPKs and promote osteogenesis. J Cell Physiol. 2019 Dec;234(12):22960–22971. doi:10.1002/jcp.28857
  • Jiang YX, Xin N, Xiong Y, Guo YJ, Yuan Y, Zhang Q, Gong P. αCGRP regulates osteogenic differentiation of bone marrow mesenchymal stem cells through ERK1/2 and p38 MAPK signaling pathways. Jan-Dec. 2022;31:9636897221107636. doi:10.1177/09636897221107636
  • Migliorini F, Maffulli N, Colarossi G, Eschweiler J, Tingart M, Betsch M. Effect of drugs on bone mineral density in postmenopausal osteoporosis: a Bayesian network meta-analysis. J Orthop Surg Res. Aug 27 2021;16(1):533. doi:10.1186/s13018-021-02678-x
  • Shen Y, Wang N, Zhang Q, Liu YL, Wu QD, He YQ, Wang Y, Wang XY, Zhao QM, Zhang QL, et al. Jin-Tian-Ge ameliorates ovariectomy-induced bone loss in rats and modulates osteoblastogenesis and osteoclastogenesis in vitro. Chin Med. Oct 5 2022;17(1):78. doi:10.1186/s13020-022-00627-2
  • Zhao ZY, Cai ZW, Chen AP, Cai M, Yang K. Application of metabolomics in osteoporosis research. Front Endocrinol (Lausanne). 2022;13:993253. doi:10.3389/fendo.2022.993253
  • Gosset A, Pouillès JM, Trémollieres F. Menopausal hormone therapy for the management of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2021 Dec;35(6):101551. doi:10.1016/j.beem.2021.101551
  • Calciolari E, Donos N, Mardas N. Osteoporotic animal models of bone healing: advantages and pitfalls. J Invest Surg. 2017 Oct;30(5):342–350. doi:10.1080/08941939.2016.1241840
  • Emmanuelle NE, Marie-Cécile V, Florence T, Arnal J-F, Lenfant F, Fontaine C, Vinel A. Critical role of estrogens on bone homeostasis in both male and female: from physiology to medical implications. Int J Mol Sci. Feb 4 2021;22(4):1568. doi:10.3390/ijms22041568
  • Park M, Han J, Lee HJ. Anti-adipogenic effect of Neferine in 3T3-L1 cells and primary white adipocytes. Nutrients. Jun 22 2020;12(6):1858. doi:10.3390/nu12061858
  • Chen JM, Liu D, Chen B, Yang Y, Zhu HY, Li DY, Liu K, Zhu LN, Liu HR, Li MQ, et al. The histone acetyltransferase Mof regulates Runx2 and osterix for osteoblast differentiation. Cell Tissue Res. 2023 Aug;393(2):265–279. doi:10.1007/s00441-023-03791-5
  • Kim EJ, Jung JI, Jeon YE, Lee HS. Aqueous extract of petasites japonicus leaves promotes osteoblast differentiation via up-regulation of Runx2 and osterix in MC3T3-E1 cells. Nutr Res Pract. 2021 Oct;15(5):579–590. doi:10.4162/nrp.2021.15.5.579
  • Gomathi K, Akshaya N, Srinaath N, Moorthi A, Selvamurugan N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci. Mar 15 2020;245:117389. doi:10.1016/j.lfs.2020.117389
  • Liu Q, Li M, Wang SY, Xiao ZS, Xiong YY, Wang GW. Recent advances of osterix transcription factor in osteoblast differentiation and bone formation. Front Cell Dev Biol. 2020;8:601224. doi:10.3389/fcell.2020.601224
  • Ni S, Xiong XB, Ni XY. MgCl2 promotes mouse mesenchymal stem cell osteogenic differentiation by activating the p38/Osx/Runx2 signaling pathway. Mol Med Rep. 2020 Nov;22(5):3904–3910. doi:10.3892/mmr.2020.11487
  • Pokrovskaya LA, Nadezhdin SV, Zubareva EV, Burda YE, Gnezdyukova ES. Expression of RUNX2 and Osterix in rat mesenchymal stem cells during culturing in osteogenic-conditioned medium. Bull Exp Biol Med. 2020 Aug;169(4):571–575. doi:10.1007/s10517-020-04931-5
  • Wang KT, Kong X, Du MD, Yu W, Wang ZH, Xu B, Yang JR, Xu JR, Liu ZL, Cheng YQ, et al. Novel soy peptide CBP: stimulation of osteoblast differentiation via TβRI-p38-MAPK-Depending RUNX2 activation. Nutrients. May 5 2022;14(9):1940. doi:10.3390/nu14091940
  • Brichkina A, Nguyen NT, Baskar R, Wee S, Gunaratne J, Robinson RC, Bulavin DV. Proline isomerisation as a novel regulatory mechanism for p38MAPK activation and functions. Cell Death Differ. 2016 Oct;23(10):1592–1601. doi:10.1038/cdd.2016.45
  • Wang YS, Luo S, Zhang DF, Qu XB, Tan YF. Sika pilose antler type I collagen promotes BMSC differentiation via the ERK1/2 and p38-MAPK signal pathways. Pharm Biol. 2017 Dec;55(1):2196–2204. doi:10.1080/13880209.2017.1397177

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.