471
Views
65
CrossRef citations to date
0
Altmetric
Original

The role of chemokines in rheumatoid arthritis and osteoarthritis

, , &
Pages 415-425 | Received 27 Oct 2005, Accepted 27 Oct 2005, Published online: 12 Jul 2009

References

  • Sallusto F., Mackay C. R., Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 2000; 18: 593–620
  • Butcher E. C. Specificity of leukocyte–endothelial interactions and diapedesis: physiologic and therapeutic implications of an active decision process. Res Immunol 1993; 144: 695–8
  • Sanchez‐Madrid F., del Pozo M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J 1999; 18: 501–11
  • Moser B., Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol 2001; 2: 123–8
  • Cupedo T., Mebius R. E. Cellular interactions in lymph node development. J Immunol 2005; 174: 21–5
  • Banchereau J., Steinman R. M. Dendritic cells and the control of immunity. Nature 1998; 392: 245–52
  • Sallusto F., Schaerli P., Loetscher P., Schaniel C., Lenig D., Mackay C. R., et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 1998; 28: 2760–9
  • Sallusto F., Palermo B., Lenig D., Miettinen M., Matikainen S., Julkunen I., et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 1999; 29: 1617–25
  • Melchers F., Rolink A. G., Schaniel C. The role of chemokines in regulating cell migration during humoral immune responses. Cell 1999; 99: 351–4
  • Sallusto F., Lanzavecchia A., Mackay C. R. Chemokines and chemokine receptors in T‐cell priming and Th1/Th2‐mediated responses. Immunol Today 1998; 19: 568–74
  • Cyster J. G., Goodnow C. C. Antigen‐induced exclusion from follicles and anergy are separate and complementary processes that influence peripheral B cell fate. Immunity 1995; 3: 691–701
  • Garside P., Ingulli E., Merica R. R., Johnson J. G., Noelle R. J., Jenkins M. K. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 1998; 281: 96–9
  • Adema G. J., Hartgers F., Verstraten R., de V. E., Marland G., Menon S., et al. A dendritic‐cell‐derived C‐C chemokine that preferentially attracts naive T cells. Nature 1997; 387: 713–17
  • Lindhout E., Vissers J. L., Hartgers F. C., Huijbens R. J., Scharenborg N. M., Figdor C. G., et al. The dendritic cell‐specific CC‐chemokine DC‐CK1 is expressed by germinal center dendritic cells and attracts CD38‐negative mantle zone B lymphocytes. J Immunol 2001; 166: 3284–9
  • Firestein G. S. Evolving concepts of rheumatoid arthritis. Nature 2003; 423: 356–61
  • Haringman J. J., Tak P. P. Chemokine blockade: a new era in the treatment of rheumatoid arthritis?. Arthritis Res Ther 2004; 6: 93–7
  • Haringman J. J., Kraan M. C., Smeets T. J., Zwinderman K. H., Tak P. P. Chemokine blockade and chronic inflammatory disease: proof of concept in patients with rheumatoid arthritis. Ann Rheum Dis 2003; 62: 715–21
  • Smith M. D., Barg E., Weedon H., Papengelis V., Smeets T., Tak P. P., et al. Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann Rheum Dis 2003; 62: 303–7
  • Tak P. P. Is early rheumatoid arthritis the same disease process as late rheumatoid arthritis?. Best Pract Res Clin Rheumatol 2001; 15: 17–26
  • Tak P. P. Examination of the synovium and synovial fluid. Rheumatoid arthritis: frontiers in pathogenesis and treatment, F. A Wollheim, G. S Firestein, G. S Panayi. Oxford University Press, Oxford 2000; 55–68, In
  • Qu Z., Garcia C. H., O'Rourke L. M., Planck S. R., Kohli M., Rosenbaum J. T. Local proliferation of fibroblast‐like synoviocytes contributes to synovial hyperplasia. Results of proliferating cell nuclear antigen/cyclin, c‐myc, and nucleolar organizer region staining. Arthritis Rheum 1994; 37: 212–20
  • Haringman J. J., Oostendorp R. L., Tak P. P. Targeting cellular adhesion molecules, chemokines and chemokine receptors in rheumatoid arthritis. Expert Opin Emerg Drugs 2005; 10: 299–310
  • Endo H., Akahoshi T., Takagishi K., Kashiwazaki S., Matsushima K. Elevation of interleukin‐8 (IL‐8) levels in joint fluids of patients with rheumatoid arthritis and the induction by IL‐8 of leukocyte infiltration and synovitis in rabbit joints. Lymphokine Cytokine Res 1991; 10: 245–52
  • Deleuran B., Lemche P., Kristensen M., Chu C. Q., Field M., Jensen J., et al. Localisation of interleukin 8 in the synovial membrane, cartilage–pannus junction and chondrocytes in rheumatoid arthritis. Scand J Rheumatol 1994; 23: 2–7
  • Kraan M. C., Patel D. D., Haringman J. J., Smith M. D., Weedon H., Ahern M. J., et al. The development of clinical signs of rheumatoid synovial inflammation is associated with increased synthesis of the chemokine CXCL8 (interleukin‐8). Arthritis Res 2001; 3: 65–71
  • Koch A. E., Kunkel S. L., Burrows J. C., Evanoff H. L., Haines G. K., Pope R. M., et al. Synovial tissue macrophage as a source of the chemotactic cytokine IL‐8. J Immunol 1991; 147: 2187–95
  • Koch A. E., Kunkel S. L., Harlow L. A., Johnson B., Evanoff H. L., Haines G. K., et al. Enhanced production of monocyte chemoattractant protein‐1 in rheumatoid arthritis. J Clin Invest 1992; 90: 772–9
  • Luster A. D. Chemokines – chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436–45
  • Bruhl H., Cihak J., Schneider M. A., Plachy J., Rupp T., Wenzel I., et al. Dual role of CCR2 during initiation and progression of collagen‐induced arthritis: evidence for regulatory activity of CCR2+ T cells. J Immunol 2004; 172: 890–8
  • Quinones M. P., Ahuja S. K., Jimenez F., Schaefer J., Garavito E., Rao A., et al. Experimental arthritis in CC chemokine receptor 2‐null mice closely mimics severe human rheumatoid arthritis. J Clin Invest 2004; 113: 856–66
  • Haringman J. J., Gerlag D. M., Smeets T. J., Baeten D., Bresnihan B., Breedveld F. C., et al. A randomized placebo controlled trial with an anti‐MCP‐1(CCL2) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum 2004; 50: S238
  • Barnes D. A., Tse J., Kaufhold M., Owen M., Hesselgesser J., Strieter R., et al. Polyclonal antibody directed against human RANTES ameliorates disease in the Lewis rat adjuvant‐induced arthritis model. J Clin Invest 1998; 101: 2910–19
  • Koch A. E., Kunkel S. L., Harlow L. A., Mazarakis D. D., Haines G. K., Burdick M. D., et al. Macrophage inflammatory protein‐1 alpha. A novel chemotactic cytokine for macrophages in rheumatoid arthritis. J Clin Invest 1994; 93: 921–8
  • Toh K., Kukita T., Wu Z., Kukita A., Sandra F., Tang Q. Y., et al. Possible involvement of MIP‐1alpha in the recruitment of osteoclast progenitors to the distal tibia in rats with adjuvant‐induced arthritis. Lab Invest 2004; 84: 1092–102
  • Zapico I., Coto E., Rodriguez A., Alvarez C., Torre J. C., Alvarez V. CCR5 (chemokine receptor‐5) DNA‐polymorphism influences the severity of rheumatoid arthritis. Genes Immun 2000; 1: 288–9
  • John S., Smith S., Morrison J. F., Symmons D., Worthington J., Silman A., et al. Genetic variation in CCR5 does not predict clinical outcome in inflammatory arthritis. Arthritis Rheum 2003; 48: 3615–16
  • Shahrara S., Proudfoot A. E., Woods J. M., Ruth J. H., Amin M. A., Park C. C., et al. Amelioration of rat adjuvant‐induced arthritis by Met‐RANTES. Arthritis Rheum 2005; 52: 1907–19
  • Vierboom M. P., Zavodny P. J., Chou C. C., Tagat J. R., Pugliese‐Sivo C., Strizki J., et al. Inhibition of the development of collagen‐induced arthritis in rhesus monkeys by a small molecular weight antagonist of CCR5. Arthritis Rheum 2005; 52: 627–36
  • Tak P. P., Smeets T. J., Daha M. R., Kluin P. M., Meijers K. A., Brand R., et al. Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity 2. Arthritis Rheum 1997; 40: 217–25
  • Takemura S., Braun A., Crowson C., Kurtin P. J., Cofield R. H., O'Fallon W. M., et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol 2001; 167: 1072–80
  • Manzo A., Paoletti S., Carulli M., Blades M. C., Barone F., Yanni G., et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol 2005; 35: 1347–59
  • Shi K., Hayashida K., Kaneko M., Hashimoto J., Tomita T., Lipsky P. E., et al. Lymphoid chemokine B cell‐attracting chemokine‐1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol 2001; 166: 650–5
  • Edwards J. C., Szczepanski L., Szechinski J., Filipowicz‐Sosnowska A., Emery P., Close D. R., et al. Efficacy of B‐cell‐targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004; 350: 2572–81
  • Carlsen H. S., Baekkevold E. S., Morton H. C., Haraldsen G., Brandtzaeg P. Monocyte‐like and mature macrophages produce CXCL13 (B cell‐attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood 2004; 104: 3021–7
  • Zheng B., Ozen Z., Zhang X., De S. S., Marinova E., Guo L., et al. CXCL13 neutralization reduces the severity of collagen‐induced arthritis. Arthritis Rheum 2005; 52: 620–6
  • Qin S., Rottman J. B., Myers P., Kassam N., Weinblatt M., Loetscher M., et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998; 101: 746–54
  • Burman A., Haworth O., Hardie D. L., Amft E. N., Siewert C., Jackson D. G., et al. A chemokine‐dependent stromal induction mechanism for aberrant lymphocyte accumulation and compromised lymphatic return in rheumatoid arthritis. J Immunol 2005; 174: 1693–700
  • Nishikawa S. I., Hashi H., Honda K., Fraser S., Yoshida H. Inflammation, a prototype for organogenesis of the lymphopoietic/hematopoietic system. Curr Opin Immunol 2000; 12: 342–5
  • Braun A., Takemura S., Vallejo A. N., Goronzy J. J., Weyand C. M. Lymphotoxin beta‐mediated stimulation of synoviocytes in rheumatoid arthritis. Arthritis Rheum 2004; 50: 2140–50
  • Bradfield P. F., Amft N., Vernon‐Wilson E., Exley A. E., Parsonage G., Rainger G. E., et al. Rheumatoid fibroblast‐like synoviocytes overexpress the chemokine stromal cell‐derived factor 1 (CXCL12), which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue. Arthritis Rheum 2003; 48: 2472–82
  • Rudolph E. H., Woods J. M. Chemokine expression and regulation of angiogenesis in rheumatoid arthritis. Curr Pharm Des 2005; 11: 613–31
  • Gerlag D. M., Borges E., Tak P. P., Ellerby H. M., Bredesen D. E., Pasqualini R., et al. Suppression of murine collagen‐induced arthritis by targeted apoptosis of synovial neovasculature. Arthritis Res 2001; 3: 357–61
  • Addison C. L., Daniel T. O., Burdick M. D., Liu H., Ehlert J. E., Xue Y. Y., et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine‐induced angiogenic activity. J Immunol 2000; 165: 5269–77
  • Strieter R. M., Polverini P. J., Kunkel S. L., Arenberg D. A., Burdick M. D., Kasper J., et al. The functional role of the ELR motif in CXC chemokine‐mediated angiogenesis. J Biol Chem 1995; 270: 27348–57
  • Pablos J. L., Santiago B., Galindo M., Torres C., Brehmer M. T., Blanco F. J., et al. Synoviocyte‐derived CXCL12 is displayed on endothelium and induces angiogenesis in rheumatoid arthritis. J Immunol 2003; 170: 2147–52
  • Joven B., Gonzalez N., Aguilar F., Santiago B., Galindo M., Alcami J., et al. Association between stromal cell‐derived factor 1 chemokine gene variant and radiographic progression of rheumatoid arthritis. Arthritis Rheum 2005; 52: 354–6
  • Grassi F., Cristino S., Toneguzzi S., Piacentini A., Facchini A., Lisignoli G. CXCL12 chemokine up‐regulates bone resorption and MMP‐9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. J Cell Physiol 2004; 199: 244–51
  • Wooley P. H., Schaefer C., Whalen J. D., Dutcher J. A., Counts D. F. A peptide sequence from platelet factor 4 (CT‐112) is effective in the treatment of type II collagen induced arthritis in mice. J Rheumatol 1997; 24: 890–8
  • Matthys P., Hatse S., Vermeire K., Wuyts A., Bridger G., Henson G. W., et al. AMD3100, a potent and specific antagonist of the stromal cell‐derived factor‐1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN‐gamma receptor‐deficient mice. J Immunol 2001; 167: 4686–92
  • Koch A. E., Volin M. V., Woods J. M., Kunkel S. L., Connors M. A., Harlow L. A., et al. Regulation of angiogenesis by the C‐X‐C chemokines interleukin‐8 and epithelial neutrophil activating peptide 78 in the rheumatoid joint. Arthritis Rheum 2001; 44: 31–40
  • Halloran M. M., Woods J. M., Strieter R. M., Szekanecz Z., Volin M. V., Hosaka S., et al. The role of an epithelial neutrophil‐activating peptide‐78‐like protein in rat adjuvant‐induced arthritis. J Immunol 1999; 162: 7492–500
  • Koch A. E., Kunkel S. L., Shah M. R., Hosaka S., Halloran M. M., Haines G. K., et al. Growth‐related gene product alpha. A chemotactic cytokine for neutrophils in rheumatoid arthritis. J Immunol 1995; 155: 3660–6
  • Van C. E., Van A. I., Wuyts A., Vercauteren R., Devos R., De Wolf‐Peeters C., et al. Tumor angiogenesis induced by granulocyte chemotactic protein‐2 as a countercurrent principle. Am J Pathol 2001; 159: 1405–14
  • Pierer M., Rethage J., Seibl R., Lauener R., Brentano F., Wagner U., et al. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll‐like receptor 2 ligands. J Immunol 2004; 172: 1256–65
  • Martel‐Pelletier J. Pathophysiology of osteoarthritis. Osteoarthritis Cartilage 2004; 12(Suppl A)S31–3
  • Attur M. G., Dave M., Akamatsu M., Katoh M., Amin A. R. Osteoarthritis or osteoarthrosis: the definition of inflammation becomes a semantic issue in the genomic era of molecular medicine. Osteoarthritis Cartilage 2002; 10: 1–4
  • Pelletier J. P., Martel‐Pelletier J., Abramson S. B. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum 2001; 44: 1237–47
  • Sandell L. J., Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 2001; 3: 107–13
  • Lisignoli G., Toneguzzi S., Piacentini A., Cristino S., Grassi F., Cavallo C., et al. CXCL12 (SDF‐1) and CXCL13 (BCA‐1) chemokines significantly induce proliferation and collagen type I expression in osteoblasts from osteoarthritis patients. J Cell Physiol 2005; 206: 78–85
  • Hering T. M. Regulation of chondrocyte gene expression. Front Biosci 1999; 4: D743–61
  • Aigner T., Kim H. A. Apoptosis and cellular vitality: issues in osteoarthritic cartilage degeneration. Arthritis Rheum 2002; 46: 1986–96
  • Kuhn K., D'Lima D. D., Hashimoto S., Lotz M. Cell death in cartilage. Osteoarthritis Cartilage 2004; 12: 1–16
  • Hashimoto S., Ochs R. L., Rosen F., Quach J., McCabe G., Solan J., et al. Chondrocyte‐derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci USA 1998; 95: 3094–9
  • Lotz M., Hashimoto S., Kuhn K. Mechanisms of chondrocyte apoptosis. Osteoarthritis Cartilage 1999; 7: 389–91
  • Walker G. D., Fischer M., Gannon J., Thompson R. C Jr., Oegema T. R Jr. Expression of type‐X collagen in osteoarthritis. J Orthop Res 1995; 13: 4–12
  • Kostoulas G., Lang A., Trueb B., Baici A. Differential expression of mRNAs for endopeptidases in phenotypically modulated (‘dedifferentiated’) human articular chondrocytes. FEBS Lett 1997; 412: 453–5
  • Merz D., Liu R., Johnson K., Terkeltaub R. IL‐8/CXCL8 and growth‐related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. J Immunol 2003; 171: 4406–15
  • von der M. K., Kirsch T., Nerlich A., Kuss A., Weseloh G., Gluckert K., et al. Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum 1992; 35: 806–11
  • Poole A. R., Matsui Y., Hinek A., Lee E. R. Cartilage macromolecules and the calcification of cartilage matrix. Anat Rec 1989; 224: 167–79
  • Kirsch T., Swoboda B., Nah H. Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthritis Cartilage 2000; 8: 294–302
  • Alaaeddine N., Olee T., Hashimoto S., Creighton‐Achermann L., Lotz M. Production of the chemokine RANTES by articular chondrocytes and role in cartilage degradation. Arthritis Rheum 2001; 44: 1633–43
  • Silvestri T., Meliconi R., Pulsatelli L., Dolzani P., Zizzi F., Frizziero L., et al. Down‐modulation of chemokine receptor cartilage expression in inflammatory arthritis. Rheumatology (Oxford) 2003; 42: 14–18
  • Borzi R. M., Mazzetti I., Macor S., Silvestri T., Bassi A., Cattini L., et al. Flow cytometric analysis of intracellular chemokines in chondrocytes in vivo: constitutive expression and enhancement in osteoarthritis and rheumatoid arthritis. FEBS Lett 1999; 455: 238–42
  • Mazzetti I., Magagnoli G., Paoletti S., Uguccioni M., Olivotto E., Vitellozzi R., et al. A role for chemokines in the induction of chondrocyte phenotype modulation. Arthritis Rheum 2004; 50((1))112–22
  • Yuan G. H., Masuko‐Hongo K., Sakata M., Tsuruha J., Onuma H., Nakamura H., et al. The role of C‐C chemokines and their receptors in osteoarthritis. Arthritis Rheum 2001; 44: 1056–70
  • Borzi R. M., Mazzetti I., Magagnoli G., Paoletti S., Uguccioni M., Gatti R., et al. Growth‐related oncogene alpha induction of apoptosis in osteoarthritis chondrocytes. Arthritis Rheum 2002; 46: 3201–11
  • Westacott C. I., Webb G. R., Warnock M. G., Sims J. V., Elson C. J. Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheum 1997; 40: 1282–91
  • Lisignoli G., Toneguzzi S., Grassi F., Piacentini A., Tschon M., Cristino S., et al. Different chemokines are expressed in human arthritic bone biopsies: IFN‐gamma and IL‐6 differently modulate IL‐8, MCP‐1 and RANTES production by arthritic osteoblasts. Cytokine 2002; 20: 231–8
  • Haringman J. J., Smeets T. J., Reinders‐Blankert P., Tak P. P. Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of rheumatoid arthritis, osteoarthritis and reactive arthritis patients. Ann Rheum Dis. 2005, [Epub ahead of print]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.