188
Views
35
CrossRef citations to date
0
Altmetric
Original

Effects of low‐intensity ultrasound (LIUS) stimulation on human cartilage explants

, , , , , & show all
Pages 305-311 | Received 22 Mar 2005, Accepted 20 Jan 2006, Published online: 12 Jul 2009

References

  • Saied A., Laugier P. High‐resolution ultrasonography for analysis of age‐ and disease‐related cartilage changes. Methods Mol Med 2004; 101: 249–65
  • Spriet M. P., Girard C. A., Foster S. F., Harasiewicz K., Holdsworth D. W., Laverty S. Validation of 40 MHz B‐scan ultrasound biomicroscope for the evaluation of osteoarthritis lesions in an animal model. Osteoarthritis Cartilage 2005; 13: 171–9
  • Enwemeka C. S., Rodriguez O., Mendosa S. The biomechanical effects of low‐intensity ultrasound on healing tendons. Ultrasound Med Biol 1990; 16: 801–7
  • Rantanen J., Thorsson O., Wollmer P., Hurme T., Kalimo H. Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury. Am J Sports Med 1999; 27: 54–9
  • Hadjiargyrou M., McLeod K., Ryaby J. P., Rubin C. Enhancement of fracture healing by low intensity ultrasound. Clin Orthop 1998; 355S: 216–29
  • Heckman J. D., Ryabi J. P., McCabe J., Frey J. J., Kilcoyne R. F. Acceleration of tibial fracture‐healing by non‐invasive, low‐intensity, pulsed ultrasound. J Bone Joint Surg 1994; 76A: 26–34
  • Cook S. D., Salkeld S. L., Popich‐Patron L. S., Ryaby J. P., Jones D. G., Barrack R. L. Improved cartilage repair after treatment with low‐intensity pulsed ultrasound. Clin Orthop Relat Res 2001; 391: S231–43
  • Nolta P. A., Klein‐Nulend J., Albers G. H. R., Marti R. K., Semeins C. M., Goei S. W. Low‐intensity ultrasound stimulates endochondral ossification in vitro. J Orthop Res 2001; 19: 301–7
  • Wiltink A., Nijweide P. J., Oosterbaan W. A., Hekkenberg R. T., Helders P. J. M. Effect of therapeutic ultrasound on endochondral ossification. Ultrasound Med Biol 1995; 21: 121–7
  • Zhang Z‐J., Huckle J., Francomano C. A., Spencer R. G. S. The effects of pulsed low‐intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production. Ultrasound Med Biol 2003; 29: 1645–51
  • Huang M‐H., Ding H‐J., Chai C‐Y., Huang Y‐F., Yang R‐C. Effects of sonication on articular cartilage in experimental osteoarthritis. J Rheumatol 1997; 24: 1978–84
  • Parvizi J., Parpura V., Kinnick R. R., Greenleaf J. F., Bolander M. E. Low intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res 1999; 17: 488–94
  • Yang K. H., Parvizi J., Wang S‐J., Lewallen D. G., Kinnick R. R., Greenleaf J. F. Exposure to low‐intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res 1996; 14: 802–9
  • Zhang Z‐J., Huckle J., Francomano C. A., Spencer R. G. S. The influence of pulsed low‐intensity ultrasound on matrix production of chondrocytes at different stages of differentiation: an explant study. Ultrasound Med Biol 2002; 28: 1547–53
  • Schafer S. J., Luyten F. P., Yanagishita M., Reddi A. H. Proteoglycan metabolism is age related and modulated by isoforms of platelet‐derived growth factor in bovine articular cartilage explant cultures. Arch Biochem Biophys 1993; 302: 431–8
  • Hollander A. P., Heathfield T. F., Webber C., Iwata Y., Bourne R., Rorabeck C. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest 1994; 93: 1722–32
  • Woodcock J. P. Ultrasonics: medical physics handbooks 1. Adam Hilger, Bristol 1979
  • Physical principles of medical ultrasonics, C. R Hill. Ellis Horwood Ltd, New York 1986
  • Duck F. A. Physical properties of tissue: a comprehensive reference book. Academic Press, London 1990
  • Cho Z‐H., Jones J. P., Singh M. Foundations of medical imaging. John Wiley & Sons, Inc, New York 1993
  • Doan N., Reher P., Meghji S., Harris M. In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillafac Surg 1999; 57: 409–19
  • Fuentes M. A., Opperman L. A., Bellinger L. L., Carlson D. S., Hinton R. J. Regulation of cell proliferation in rat mandibular condylar cartilage in explant culture by insulin‐like growth factor‐1 and fibroblast growth factor‐2. Arch Oral Biol 2002; 47: 643–54
  • Burton‐Wurster N., Vernier‐Singer M., Farquhar T., Lust G. Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J Orthop Res 1993; 11: 717–29
  • Farndale R. W., Buttle D. J., Barrett A. J. Improved quantification and discrimination of sulfated glycosaminoglycans by use of dimethylene blue. Biochem Biophys Acta 1986; 883: 173–7
  • Boyle J., Luan B., Cruz T. F., Kandel R. A. Characterization of proteoglycan accumulation during formation of cartilagenous tissue in vitro. Osteoarthritis Cartilage 1995; 3: 117–25
  • Huang M‐H., Yang R‐C., Ding H‐J., Chai C‐Y. Ultrasound effect on level of stress proteins and arthritic histology in experimental arthritis. Arch Phys Med Rehabil 1999; 80: 551–6
  • Nishikori T., Ochi M., Uchio Y., Maniwa S., Kataoka H., Kawasaki K. Effects of low‐intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in Atelocollagen gel. J Biomed Mater Res 2002; 59: 201–6
  • Hollander A. P., Pidoux I., Reiner A., Rorabeck C., Bourne R., Poole A. R. Damage to type II collagen on aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J Clin Invest 1995; 96: 2859–69
  • Giannoni P., Crovace A., Malpeli M., Maggi E., Arbico R., Cancedda R. Species variability in the differentiation potential of in vitro‐expanded articular chondrocytes restricts predictive studies on cartilage repair using animal models. Tissue Eng 2005; 11: 237–48
  • Hunziker E. B. Biologic repair of articular cartilage: defect models in experimental animals and matrix requirements. Clin Orthop 1999; 367: S135–46
  • Min B. H., Kim H. J., Lim H., Park C‐S., Park S. R. Effects of ageing and arthritic disease on nitric oxide production by human articular chondrocytes. Exp Mol Med 2001; 33: 299–302
  • Harle J., Salih V., Mayia F., Knowles J. C., Olsen I. Effects of ultrasound on the growth and function of bone and periodontal ligament cells in vitro. Ultrasound Med Biol 2001; 27: 579–86
  • Kim H. J., Park S. R., Park H. J., Choi B. H., Min B. H. Potential predictive markers for proliferative capacity of cultured human articular chondrocytes: PCNA and p21. Artif Organs 2005; 29: 393–8
  • Mitrovic D., Quintero M., Stankovic A., Ryckewaert A. Cell density of adult human femoral condyle articular cartilage joints with normal and fibrillated surface. Lab Invest 1983; 49: 309–16
  • Zhou S., Schmelz A., Seufferlein T., Li Y., Zhao J., Bachem M. G. Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 2004; 279: 54463–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.