271
Views
12
CrossRef citations to date
0
Altmetric
Review

Borreliosis: recent research, diagnosis, and management

, , &
Pages 161-172 | Accepted 11 Feb 2008, Published online: 12 Jul 2009

References

  • Steere A. C., Malawista S. E., Snydman D. R., Shope R. E., Andiman W. A., Ross M. R., et al. Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three Connecticut communities. Arthritis Rheum 1977; 20: 7–17
  • Steere A. C., Broderick T. F., Malawista S. E. Erythema chronicum migrans and Lyme arthritis: epidemiologic evidence for a tick vector. Am J Epidemiol 1978; 108: 312–21
  • Barbour A. G. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 1984; 57: 521–5
  • Benach J. L., Bosler E. M., Hanrahan J. P., Coleman J. L., Habicht G. S., Bast T. F., et al. Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med 1983; 308: 740–2
  • Steere A. C., Grodzicki R. L., Kornblatt A. N., Craft J. E., Barbour A. G., Burgdorfer W., et al. The spirochetal etiology of Lyme disease. N Engl J Med 1983; 308: 733–40
  • Wang G., van Dam A. P., Dankert J. Phenotypic and genetic characterization of a novel Borrelia burgdorferi sensu lato isolate from a patient with Lyme borreliosis. J Clin Microbiol 1999; 37: 3025–8
  • Stanek G., Satz N., Strle F., Wilske B. Epidemiology of Lyme borreliosis. Aspects of Lyme borreliosis, K Weber, W Burgdorfer. Springer, Berlin 1993; 358–70
  • Strle F. Lyme borreliosis in Slovenia. Zentralbl Bakteriol 1999; 289: 643–52
  • Campbell G. L., Fritz C. L., Fish D., Nowakowski J., Nadelman R. B., Wormser G. P. Estimation of the incidence of Lyme disease. Am J Epidemiol 1998; 148: 1018–26
  • Humair P., Gern L. The wild hidden face of Lyme borreliosis in Europe. Microbes Infect 2000; 2: 915–22
  • De Silva A. M., Fikrig E. Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg 1995; 53: 397–404
  • des Vignes F., Piesman J., Heffernan R., Schulze T. L., Stafford K. C III., Fish D. Effect of tick removal on transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis nymphs. J Infect Dis 2001; 183: 773–8
  • Piesman J. Dynamics of Borrelia burgdorferi transmission by nymphal Ixodes dammini ticks. J Infect Dis 1993; 167: 1082–5
  • Junttila J., Peltomaa M., Soini H., Marjamaki M., Viljanen M. K. Prevalence of Borrelia burgdorferi in Ixodes ricinus ticks in urban recreational areas of Helsinki. J Clin Microbiol 1999; 37: 1361–5
  • Steere A. C. Lyme disease. N Engl J Med 2001; 345: 115–25
  • Fraser C. M., Casjens S., Huang W. M., Sutton G. G., Clayton R., Lathigra R., et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 1997; 390: 580–6
  • Glockner G., Lehmann R., Romualdi A., Pradella S., Schulte‐Spechtel U., Schilhabel M., et al. Comparative analysis of the Borrelia garinii genome. Nucleic Acids Res 2004; 32: 6038–46
  • Rosa P. A., Tilly K., Stewart P. E. The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 2005; 3: 129–43
  • Strle F., Nadelman R. B., Cimperman J., Nowakowski J., Picken R. N., Schwartz I., et al. Comparison of culture‐confirmed erythema migrans caused by Borrelia burgdorferi sensu stricto in New York State and by Borrelia afzelii in Slovenia. Ann Intern Med 1999; 130: 32–6
  • Haddad F. A., Nadelman R. B. Lyme disease and the heart. Front Biosci 2003; 8: s769–82
  • Steere A. C., Schoen R. T., Taylor E. The clinical evolution of Lyme arthritis. Ann Intern Med 1987; 107: 725–31
  • Neelakanta G., Li X., Pal U., Liu X., Beck D. S., DePonte K., et al. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog 2007; 3: e33
  • Pal U., Li X., Wang T., Montgomery R. R., Ramamoorthi N., Desilva A. M., et al. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 2004; 119: 457–68
  • Hovius J. W., van Dam A. P., Fikrig E. Tick–host–pathogen interactions in Lyme borreliosis. Trends Parasitol 2007; 23: 434–8
  • Ramamoorthi N., Narasimhan S., Pal U., Bao F., Yang X. F., Fish D., et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 2005; 436: 573–7
  • Benach J. L., Fleit H. B., Habicht G. S., Coleman J. L., Bosler E. M., Lane B. P. Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor. J Infect Dis 1984; 150: 497–507
  • Peterson P. K., Clawson C. C., Lee D. A., Garlich D. J., Quie P. G., Johnson R. C. Human phagocyte interactions with the Lyme disease spirochete. Infect Immun 1984; 46: 608–11
  • Georgilis K., Steere A. C., Klempner M. S. Infectivity of Borrelia burgdorferi correlates with resistance to elimination by phagocytic cells. J Infect Dis 1991; 163: 150–5
  • Rittig M. G., Krause A., Haupl T., Schaible U. E., Modolell M., Kramer M. D., et al. Coiling phagocytosis is the preferential phagocytic mechanism for Borrelia burgdorferi. Infect Immun 1992; 60: 4205–12
  • Suhonen J., Hartiala K., Tuominen‐Gustafsson H., Viljanen M. K. Borrelia burgdorferi‐induced oxidative burst, calcium mobilization, and phagocytosis of human neutrophils are complement dependent. J Infect Dis 2000; 181: 195–202
  • Suhonen J., Hartiala K., Viljanen M. K. Tube phagocytosis, a novel way for neutrophils to phagocytize borrelia burgdorferi. Infect Immun 1998; 66: 3433–5
  • Lusitani D., Malawista S. E., Montgomery R. R. Borrelia burgdorferi are susceptible to killing by a variety of human polymorphonuclear leukocyte components. J Infect Dis 2002; 185: 797–804
  • Hartiala P., Hytonen J., Suhonen J., Lepparanta O., Tuominen‐Gustafsson H., Viljanen M. K. Borrelia burgdorferi inhibits human neutrophil functions. Microbes Infect 2008; 10: 60–8
  • Steere A. C., Bartenhagen N. H., Craft J. E., Hutchinson G. J., Newman J. H., Rahn D. W., et al. The early clinical manifestations of Lyme disease. Ann Intern Med 1983; 99: 76–82
  • Ribeiro J. M., Weis J. J., Telford S. R III. Saliva of the tick Ixodes dammini inhibits neutrophil function. Exp Parasitol 1990; 70: 382–8
  • Montgomery R. R., Lusitani D., De Boisfleury C. A., Malawista S. E. Tick saliva reduces adherence and area of human neutrophils. Infect Immun 2004; 72: 2989–94
  • Xu Q., Seemanapalli S. V., Reif K. E., Brown C. R., Liang F. T. Increasing the recruitment of neutrophils to the site of infection dramatically attenuates Borrelia burgdorferi infectivity. J Immunol 2007; 178: 5109–15
  • Zhang J. R., Norris S. J. Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect Immun 1998; 66: 3689–97
  • Zhang J. R., Hardham J. M., Barbour A. G., Norris S. J. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP‐like sequence cassettes. Cell 1997; 89: 275–85
  • Norris S. J. Antigenic variation with a twist – the Borrelia story. Mol Microbiol 2006; 60: 1319–22
  • Zhang J. R., Norris S. J. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette‐specific, segmental gene conversion. Infect Immun 1998; 66: 3698–704
  • Bankhead T., Chaconas G. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol 2007; 65: 1547–58
  • Breitner‐Ruddock S., Wurzner R., Schulze J., Brade V. Heterogeneity in the complement‐dependent bacteriolysis within the species of Borrelia burgdorferi. Med Microbiol Immunol 1997; 185: 253–60
  • Brade V., Kleber I., Acker G. Differences of two Borrelia burgdorferi strains in complement activation and serum resistance. Immunobiology 1992; 185: 453–65
  • van Dam A. P., Oei A., Jaspars R., Fijen C., Wilske B., Spanjaard L., et al. Complement‐mediated serum sensitivity among spirochetes that cause Lyme disease. Infect Immun 1997; 65: 1228–36
  • Hellwage J., Meri T., Heikkila T., Alitalo A., Panelius J., Lahdenne P., et al. The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 2001; 276: 8427–35
  • Kraiczy P., Hellwage J., Skerka C., Becker H., Kirschfink M., Simon M. M., et al. Complement resistance of Borrelia burgdorferi correlates with the expression of BbCRASP‐1, a novel linear plasmid‐encoded surface protein that interacts with human factor H and FHL‐1 and is unrelated to Erp proteins. J Biol Chem 2004; 279: 2421–9
  • Kraiczy P., Skerka C., Brade V., Zipfel P. F. Further characterization of complement regulator‐acquiring surface proteins of Borrelia burgdorferi. Infect Immun 2001; 69: 7800–9
  • Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y. J., et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811
  • Frasca L., Fedele G., Deaglio S., Capuano C., Palazzo R., Vaisitti T., et al. CD38 orchestrates migration, survival and Th1‐immune response of human mature dendritic cells. Blood 2006; 107: 2392–9
  • Partida‐Sanchez S., Goodrich S., Kusser K., Oppenheimer N., Randall T. D., Lund F. E. Regulation of dendritic cell trafficking by the ADP‐ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity 2004; 20: 279–91
  • Salmi M., Jalkanen S. Cell‐surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 2005; 5: 760–71
  • Lee H. C. Enzymatic functions and structures of CD38 and homologs. Chem Immunol 2000; 75: 39–59
  • Jenner R. G., Young R. A. Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 2005; 3: 281–94
  • Partida‐Sanchez S., Cockayne D. A., Monard S., Jacobson E. L., Oppenheimer N., Garvy B., et al. Cyclic ADP‐ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 2001; 7: 1209–16
  • Suhonen J., Komi J., Soukka J., Lassila O., Viljanen M. K. Interaction between Borrelia burgdorferi and immature human dendritic cells. Scand J Immunol 2003; 58: 67–75
  • Hartiala P., Hytonen J., Pelkonen J., Kimppa K., West A., Penttinen M. A., et al. Transcriptional response of human dendritic cells to Borrelia garinii – defective CD38 and CCR7 expression detected. J Leukoc Biol 2007; 82: 33–43
  • Coleman J. L., Gebbia J. A., Piesman J., Degen J. L., Bugge T. H., Benach J. L. Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 1997; 89: 1111–19
  • Probert W. S., Johnson B. J. Identification of a 47(kDa fibronectin‐binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 1998; 30: 1003–15
  • Parveen N., Leong J. M. Identification of a candidate glycosaminoglycan‐binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 2000; 35: 1220–1234
  • Coburn J., Chege W., Magoun L., Bodary S. C., Leong J. M. Characterization of a candidate Borrelia burgdorferi beta3‐chain integrin ligand identified using a phage display library. Mol Microbiol 1999; 34: 926–40
  • Brown E. L., Wooten R. M., Johnson B. J., Iozzo R. V., Smith A., Dolan M. C., et al. Resistance to Lyme disease in decorin‐deficient mice. J Clin Invest 2001; 107: 845–52
  • Guo B. P., Brown E. L., Dorward D. W., Rosenberg L. C., Hook M. Decorin‐binding adhesins from Borrelia burgdorferi. Mol Microbiol 1998; 30: 711–23
  • Shi Y., Xu Q., Seemanapalli S. V., McShan K., Liang F. T. The dbpBA locus of Borrelia burgdorferi is not essential for infection of mice. Infect Immun 2006; 74: 6509–12
  • Stricker R. B. Counterpoint: long‐term antibiotic therapy improves persistent symptoms associated with Lyme disease. Clin Infect Dis 2007; 45: 149–57
  • Auwaerter P. G. Point: antibiotic therapy is not the answer for patients with persisting symptoms attributable to Lyme disease. Clin Infect Dis 2007; 45: 143–8
  • Steere A. C., Glickstein L. Elucidation of Lyme arthritis. Nat Rev Immunol 2004; 4: 143–52
  • Haupl T., Hahn G., Rittig M., Krause A., Schoerner C., Schonherr U., et al. Persistence of Borrelia burgdorferi in ligamentous tissue from a patient with chronic Lyme borreliosis. Arthritis Rheum 1993; 36: 1621–6
  • Hulinska D., Votypka J., Valesova M. Persistence of Borrelia garinii and Borrelia afzelii in patients with Lyme arthritis. Zentralbl Bakteriol 1999; 289: 301–18
  • Schmidli J., Hunziker T., Moesli P., Schaad U. B. Cultivation of Borrelia burgdorferi from joint fluid three months after treatment of facial palsy due to Lyme borreliosis. J Infect Dis 1988; 158: 905–6
  • Nocton J. J., Dressler F., Rutledge B. J., Rys P. N., Persing D. H., Steere A. C. Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis. N Engl J Med 1994; 330: 229–34
  • Priem S., Burmester G. R., Kamradt T., Wolbart K., Rittig M. G., Krause A. Detection of Borrelia burgdorferi by polymerase chain reaction in synovial membrane, but not in synovial fluid from patients with persisting Lyme arthritis after antibiotic therapy. Ann Rheum Dis 1998; 57: 118–21
  • Carlson D., Hernandez J., Bloom B. J., Coburn J., Aversa J. M., Steere A. C. Lack of Borrelia burgdorferi DNA in synovial samples from patients with antibiotic treatment‐resistant Lyme arthritis. Arthritis Rheum 1999; 42: 2705–9
  • Barthold S. W., Beck D. S., Hansen G. M., Terwilliger G. A., Moody K. D. Lyme borreliosis in selected strains and ages of laboratory mice. J Infect Dis 1990; 162: 133–8
  • Matyniak J. E., Reiner S. L. T helper phenotype and genetic susceptibility in experimental Lyme disease. J Exp Med 1995; 181: 1251–4
  • Pavia C., Inchiosa M. A., Jr., Wormser G. P. Efficacy of short‐course ceftriaxone therapy for Borrelia burgdorferi infection in C3H mice. Antimicrob Agents Chemother 2002; 46: 132–4
  • Bockenstedt L. K., Mao J., Hodzic E., Barthold S. W., Fish D. Detection of attenuated, noninfectious spirochetes in Borrelia burgdorferi‐infected mice after antibiotic treatment. J Infect Dis 2002; 186: 1430–7
  • Straubinger R. K., Summers B. A., Chang Y. F., Appel M. J. Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J Clin Microbiol 1997; 35: 111–6
  • Yrjanainen H., Hytonen J., Soderstrom K. O., Oksi J., Hartiala K., Viljanen M. K. Persistent joint swelling and Borrelia‐specific antibodies in Borrelia garinii‐infected mice after eradication of vegetative spirochetes with antibiotic treatment. Microbes Infect 2006; 8: 2044–51
  • Yrjanainen H., Hytonen J., Song X. Y., Oksi J., Hartiala K., Viljanen M. K. Anti‐tumor necrosis factor‐alpha treatment activates Borrelia burgdorferi spirochetes 4 weeks after ceftriaxone treatment in C3H/He mice. J Infect Dis 2007; 195: 1489–96
  • Steere A. C., Dwyer E., Winchester R. Association of chronic Lyme arthritis with HLA‐DR4 and HLA‐DR2 alleles. N Engl J Med 1990; 323: 219–23
  • Kalish R. A., Leong J. M., Steere A. C. Association of treatment‐resistant chronic Lyme arthritis with HLA‐DR4 and antibody reactivity to OspA and OspB of Borrelia burgdorferi. Infect Immun 1993; 61: 2774–9
  • Lengl‐Janssen B., Strauss A. F., Steere A. C., Kamradt T. The T helper cell response in Lyme arthritis: differential recognition of Borrelia burgdorferi outer surface protein A in patients with treatment‐resistant or treatment‐responsive Lyme arthritis. J Exp Med 1994; 180: 2069–78
  • Steere A. C., Klitz W., Drouin E. E., Falk B. A., Kwok W. W., Nepom G. T., et al. Antibiotic‐refractory Lyme arthritis is associated with HLA‐DR molecules that bind a Borrelia burgdorferi peptide. J Exp Med 2006; 203: 961–71
  • Limbach F. X., Jaulhac B., Puechal X., Monteil H., Kuntz J. L., Piemont Y., et al. Treatment resistant Lyme arthritis caused by Borrelia garinii. Ann Rheum Dis 2001; 60: 284–6
  • Aguero‐Rosenfeld M. E., Wang G., Schwartz I., Wormser G. P. Diagnosis of Lyme borreliosis. Clin Microbiol Rev 2005; 18: 484–509
  • Wilske B., Fingerle V., Schulte‐Spechtel U. Microbiological and serological diagnosis of Lyme borreliosis. FEMS Immunol Med Microbiol 2007; 49: 13–21
  • Kalish R. A., McHugh G., Granquist J., Shea B., Ruthazer R., Steere A. C. Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin Infect Dis 2001; 33: 780–5
  • Wormser G. P., Dattwyler R. J., Shapiro E. D., Halperin J. J., Steere A. C., Klempner M. S., et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2006; 43: 1089–1134
  • Hunfeld K. P., Brade V. Antimicrobial susceptibility of Borrelia burgdorferi sensu lato: what we know, what we don't know, and what we need to know. Wien Klin Wochenschr 2006; 118: 659–68
  • Luft B. J., Dattwyler R. J., Johnson R. C., Luger S. W., Bosler E. M., Rahn D. W., et al. Azithromycin compared with amoxicillin in the treatment of erythema migrans. A double‐blind, randomized, controlled trial. Ann Intern Med 1996; 124: 785–91
  • Borg R., Dotevall L., Hagberg L., Maraspin V., Lotric‐Furlan S., Cimperman J., et al. Intravenous ceftriaxone compared with oral doxycycline for the treatment of Lyme neuroborreliosis. Scand J Infect Dis 2005; 37: 449–54
  • Oksi J., Nikoskelainen J., Hiekkanen H., Lauhio A., Peltomaa M., Pitkaranta A., et al. Duration of antibiotic treatment in disseminated Lyme borreliosis: a double‐blind, randomized, placebo‐controlled, multicenter clinical study. Eur J Clin Microbiol Infect Dis 2007; 26: 571–81
  • Steere A. C., Angelis S. M. Therapy for Lyme arthritis: strategies for the treatment of antibiotic‐refractory arthritis. Arthritis Rheum 2006; 54: 3079–86
  • Schoen R. T., Aversa J. M., Rahn D. W., Steere A. C. Treatment of refractory chronic Lyme arthritis with arthroscopic synovectomy. Arthritis Rheum 1991; 34: 1056–60
  • Pal U., De Silva A. M., Montgomery R. R., Fish D., Anguita J., Anderson J. F., et al. Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein A. J Clin Invest 2000; 106: 561–9
  • Wilske B., Preac‐Mursic V., Jauris S., Hofmann A., Pradel I., Soutschek E., et al. Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi. Infect Immun 1993; 61: 2182–91
  • Pal U., Yang X., Chen M., Bockenstedt L. K., Anderson J. F., Flavell R. A., et al. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 2004; 113: 220–30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.