Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 43, 2016 - Issue 5
305
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Reduction kinetics of commercial haematite pellet in a fixed bed at 1123–1273 K

, , &
Pages 394-402 | Received 15 Jul 2015, Accepted 21 Sep 2015, Published online: 18 Mar 2016

References

  • R. Yin: ‘Considerations on steel manufacturing process’, ISIJ Int., 2002, 42, (10), 1061–1064. doi: 10.2355/isijinternational.42.1061
  • M. Gojic: ‘Current state and development of steelmaking processes’, Metalurgija, 2004, 3, (43), 163–168.
  • T. P. Battle: ‘Sustainability in ironmaking: the rise of direct reduction’, in ‘Proceedings of the extraction and processing division symposium on pyrometallurgy in honor of David G.C. Robertson’, (ed. P. J. Mackey et al.), 275–288; 2014, Hoboken, NJ, John Wiley & Sons, Inc.
  • H. K. Pinegar, M. S. Moats and H. Y. Sohn: ‘Flowsheet development, process simulation and economic feasibility analysis for novel suspension ironmaking technology based on natural gas: Part 1 – flowsheet and simulation for ironmaking with reformerless natural gas’, Ironmaking Steelmaking, 2012, 39, (6), 398–408. doi: 10.1179/1743281211Y.0000000053
  • C. Wang, M. Larsson, C. Ryman, C. E. Grip, J. O. Wikström, A. Johnsson and J. Engdahl: ‘A model on CO2 emission reduction in integrated steelmaking by optimization methods’, Int. J. Energ. Res., 2008, 32, (12), 1092–1106. doi: 10.1002/er.1447
  • S. K. Dutta, A. B. Lele and N. K. Pancholi: ‘Studies on direct reduced iron melting in induction furnace’, Trans. Indian Inst. Met., 2004, 57, (5), 467–473.
  • A. Sawada and T. Mitamoto: ‘Overview of market for direct reduced iron’, Kobelco Technol. Rev., 2010, 29, 47–49.
  • B. Anameric and S. K. Kawatra: ‘Properties and features of direct reduced iron’, Miner. Process. Extr. Metall.Rev., 2007, 28, 59–116. doi: 10.1080/08827500600835576
  • A. Elliot and J. Kopfle: ‘New developments in the MIDREX® direct reduction process’; 2008, Charlotte, NC, Midrex Technologies.
  • A. Chatterjee: ‘Sponge iron production by direct reduction of iron oxide’; 2012, India, PHI Learning Private Limited.
  • A. Markotic, N. Dolic and V. Trujic: ‘State of the direct reduction and reduction smelting processes’, J. Min. Metall., 2002, 8, (3–4), 123–141. doi: 10.2298/JMMB0204123M
  • T. Battle, U. Srivastava, J. Kopfle, R. Hunter and J. McClelland: ‘Chapter 1.2 — the direct reduction of iron’ in ‘Treatise on process metallurgy’, (ed. S. Seetharaman), 89–176; 2014, Boston, Elsevier.
  • Midrex R&D: ‘World Direct Reduction statistics’; 2013, Charlotte, NC, Midrex Technologies.
  • X. Jiang, L. Wang and F. M. Shen: ‘Shaft furnace direct reduction technology — midrex and energiron’, Adv. Mater. Res., 2013, 805–806, 654–659. doi: 10.4028/www.scientific.net/AMR.805-806.654
  • M. Barati: ‘Energy intensity and greenhouse gases footprint of metallurgical processes: a continuous steelmaking case study’, Energy, 2010, 35, 3731–3737. doi: 10.1016/j.energy.2010.05.022
  • J. Aguilar, R. Fuentes and R. Viramontes: ‘Simulation of iron ore reduction in a fixed bed’, Modell. Simul. Mater. Sci. Eng., 1995, 3, (2), 131–147. doi: 10.1088/0965-0393/3/2/001
  • J. Yagi, R. Takahashi and Y. Omori: ‘Study on the reduction process of iron oxide pellets in isothermal fixed bed’, Sci. Rep. Res. Inst.,Tohoku University. Ser. A, Phys., Chem. Metall., 1971, 23, 31–47.
  • R. Longbottom and L. Kolbeinsen: ‘Iron ore reduction with CO and H2 gas mixtures — thermodynamic and kinetic modelling’, 4th ULCOS Seminar, 1–2 October 2008, Essen, Germany, 1–13.
  • R. Beheshti, J. Moosberg-Bustnes and R. E. Aune: ‘Modeling and simulation of isothermal reduction of a single hematite pellet in gas mixtures of H2 and CO’ in ‘TMS 2014 supplemental proceedings’, 495–502; 2014, Hoboken, NJ, John Wiley & Sons, Inc.
  • O. Levenspiel: ‘Chemical reaction engineering’, 1999, Hoboken, NJ, USA, John Wiley & Sons.
  • J.-I. Yagi and J. Szekely: ‘The effect of gas and solids maldistribution on the performance of moving-bed reactors: the reduction of iron oxide pellets with hydrogen’, AIChE J., 1979, 25, (5), 800–810. doi: 10.1002/aic.690250508
  • L. Kolbeinsen: ‘Modelling of DRI processes with two simultaneously active reducing gases’, Steel Res. Int., 2010, 81, (10), 819–828. doi: 10.1002/srin.201000144
  • J. Szekely, J. W. Evans and H. Y. Sohn: ‘Gas-solid reaction’; 1976, New York, USA, Academic Press.
  • M. S. Valipour: ‘Mathematical modeling of a non-catalytic gas-solid reaction: hematite pellet reduction with syngas’, Trans. C: Chem. Chem. Eng., 2009, 16, (2), 108–124.
  • R. Beheshti, J. Moosberg-Bustnes, M. William Kennedy and R. E. Aune: ‘Reduction of commercial hematite pellet in isothermal fixed bed—experiments and numerical modelling’, Ironmaking Steelmaking, 2015, in press.
  • J. Shi, E. Donskoi, D. L. S. McElwain and L. J. Wibberley: ‘Modelling the reduction of an iron ore-coal composite pellet with conduction and convection in an axisymmetric temperature field’, Math. Comput. Modell., 2005, 42, (1–2), 45–60. doi: 10.1016/j.mcm.2005.05.014
  • M. S. Valipour and Y. Saboohi: ‘Modeling of multiple noncatalytic gas–solid reactions in a moving bed of porous pellets based on finite volume method’, Heat Mass Transfer, 2007, 43, (9), 881–894. doi: 10.1007/s00231-006-0154-2
  • A. Rahimi and A. Niksiar: ‘A general model for moving-bed reactors with multiple chemical reactions part I: model formulation’, Int. J. Min. Process., 2013, 124 (November), 58–66. doi: 10.1016/j.minpro.2013.02.015
  • S. Sun and W. K. Lu: ‘Mathematical modelling of reactions in iron ore/coal composites’, ISIJ Int., 1993, 33, (10), 1062–1069. doi: 10.2355/isijinternational.33.1062
  • FactSage: ‘Reaction-Web’, 2015 [viewed 2015 23.08.2015]; Available from: http://www.crct.polymtl.ca/reacweb.htm.
  • F. Patisson and D. Ablitzer: ‘Modeling of gas-solid reactions: kinetics, mass and heat transfer, and evolution of the pore structure’, Chem. Eng. Technol., 2000, 23, (1), 75–79. doi: 10.1002/(SICI)1521-4125(200001)23:1<75::AID-CEAT75>3.0.CO;2-V
  • LKAB: ‘LKAB product booklet’; 2013, Sweden, LKAB.
  • Y. Takenaka, Y. Kimura, K. Narita and D. Kaneko: ‘Mathematical model of direct reduction shaft furnace and its application to actual operations of a model plant’, Comput. Chem. Eng., 1986, 10, (1), 67–75. doi: 10.1016/0098-1354(86)85047-5
  • S. M. M. Nouri, H. Ale Ebrahim and E. Jamshidi: ‘Simulation of direct reduction reactor by the grain model’, Chem. Eng. J., 2011, 166, (2), 704–709. doi: 10.1016/j.cej.2010.11.025
  • D. R. Parisi and M. A. Laborde: ‘Modeling of counter current moving bed gas-solid reactor used in direct reduction of iron ore’, Chem. Eng. J., 2004, 104, 35–43. doi: 10.1016/j.cej.2004.08.001
  • N. Towhidi and J. Szekely: ‘Reduction kinetics of commercial low-silica hematite pellets with CO-H2 mixture range 600–1232°C’, Ironmaking Steelmaking, 1981, 6, 237–249.
  • E. T. Turkdogan and J. V. Vinters: ‘Gaseous reduction of iron oxides: part I. Reduction of hematite in hydrogen’, Metall. Mater. Trans. B, 1971, 2 (November), 3175–3188. doi: 10.1007/BF02814970
  • J. O. Edstrom: ‘The mechanism of reduction of iron oxide’, J. Iron Steel Inst., 1953, 175, 289–304.
  • A. A. Poli and M. C. Cirillo: ‘On the use of the normalized mean square error in evaluating dispersion model performance’, Atmos. Environ. Part A. Gen. Top., 1993, 27, (15), 2427–2434. doi: 10.1016/0960-1686(93)90410-Z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.