Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 45, 2018 - Issue 7
545
Views
15
CrossRef citations to date
0
Altmetric
Articles

Distribution of macro-inclusions in low carbon aluminium-killed steel slabs

, , , , , & show all
Pages 592-602 | Received 19 Feb 2017, Accepted 07 Mar 2017, Published online: 22 Mar 2017

References

  • Sasai K. Direct measurement of agglomeration force exerted between alumina particles in molten steel. ISIJ Int. 2014;54(12):2780–2789. doi: 10.2355/isijinternational.54.2780
  • Thomas B, Yuan Q, Mahmood S, et al. Transport and entrapment of particles in steel continuous casting. Metall Mater Trans B. 2014;45(1):22–35. doi: 10.1007/s11663-013-9916-7
  • Miki Y, Ohno H, Kishimoto Y, et al. Numerical simulation on inclusion and bubble entrapment in solidified shell in model experiment and in mold of continuous caster with DC magnetic field. Tetsu-To-Hagane. 2011;97(8):423–432. doi: 10.2355/tetsutohagane.97.423
  • McPherson NA. Continuously cast clean steel. Steelmaking Proceedings; Detroit (MI). Warrendale (PA): Iron and Steel Society/AIME; 1985. p. 13–25.
  • Mukai K, Zhong L, Zeze M. Interfacial properties of molten low carbon steel containing Ti, Nb or B in relation to the behavior of fine particles in continuous casting process. ISIJ Int. 2006;46(12):1810–1816. doi: 10.2355/isijinternational.46.1810
  • Mukai K, Lin W. Motion of small particles in solution with a interfacial tension gradient and engulfment of the particles by solidifying interface. Tetsu-To-Hagane. 1994;80(7):527–532. doi: 10.2355/tetsutohagane1955.80.7_527
  • Shibata H, Yin H, Yoshinaga S, et al. In-situ observation of engulfment and pushing of nonmetallic inclusions in steel melt by advancing melt/solid interface. ISIJ Int. 1998;38(2):149–156. doi: 10.2355/isijinternational.38.149
  • Huang F, Wang X, Zhang J, et al. In situ observation of solidification process of AISI 304 austenitic stainless steel. J Iron Steel Res. 2008;15(6):78–82. doi: 10.1016/S1006-706X(08)60271-X
  • Wilde G, Perepezko JH. Experimental study of particle incorporation during dendritic solidification. Mater Sci Eng A. 2000;283(1-2):25–37. doi: 10.1016/S0921-5093(00)00705-X
  • Nakata H, Inoue T, Mori H, et al. Improvement of billet surface quality by ultra-high-frequency electromagnetic casting. ISIJ Int. 2002;42(3):264–272. doi: 10.2355/isijinternational.42.264
  • Awajiya Y, Kubota Y, Takeuchi S. Inclusion entrapment location in solidified shell of ultralow carbon steel slab. AISTech Proceedings. Charlotte (NC): Association for Iron & Steel Technology; 2005. p. 65–73.
  • Miyake T, Morishita M, Nakata H, et al. Influence of sulphur content and molten steel flow on entrapment of bubbles to solid/liquid interface. ISIJ Int. 2006;46(12):1817–1822. doi: 10.2355/isijinternational.46.1817
  • Lee GG, Shin HJ, Thomas BG, et al. Asymmetric multi-phase fluid flow and particle entrapment in a continuous casting mold. Pittsburgh (PA): AISTech; 2008. p. 1–12.
  • Zhang Q, Wang L, Wang X. Influence of casting speed variation during unsteady continuous casting on non-metallic inclusions in IF steel slabs. ISIJ Int. 2006;46(10):1421–1426. doi: 10.2355/isijinternational.46.1421
  • Wang M, Bao YP, Cui H, et al. Surface cleanliness evaluation in Ti stabilised ultralow carbon (Ti-IF) steel. Ironmak Steelmak. 2011;38(5):386–390. doi: 10.1179/1743281211Y.0000000016
  • Kumar A, Choudhary SK, Ajmani SK. Distribution of macroinclusions across slab thickness. ISIJ Int. 2012;52(12):2305–2307. doi: 10.2355/isijinternational.52.2305
  • Deng X, Li L, Wang X, et al. Subsurface macro-inclusions and solidified hook character in aluminum-killed deep-drawing steel slabs. Int J Min Met Mater. 2014;21(6):531–543. doi: 10.1007/s12613-014-0939-0
  • Yu H, Deng X, Wang X, et al. Characteristics of subsurface inclusions in deep-drawing steel slabs at high casting speed. Metall Res Technol. 2015;112(6):608–620. doi: 10.1051/metal/2015043
  • Zhang L, Thomas BG. State of the art in evaluation and control of steel cleanliness. ISIJ Int. 2003;43(3):271–291. doi: 10.2355/isijinternational.43.271
  • Pretorius EB, Oltmann HG, Cash T. The effective modification of spinel inclusions by Ca treatment in LCAK steel. Iron Steel Technol. 2010;7(7):31–44.
  • Deng X-X, Wang X-H, Li L-P, et al. Effect of ladle change process on the surface cleanliness of IF steel continuous casting slabs. J Univ Sci Technol B. 2014;36(7):880–886.
  • Marukawa K. The challenge of braking the limit of the steel refining on the mass production. Japan Society for the Promotion of Science 19th Steelmaking Commission Reaction Process Research; 1996.
  • Sahai Y, Emi T. Tundish technology for clean steel production. Singapore: World Scientific; 2008.
  • Li L, Wang X, Deng X, et al. Application of high speed continuous casting on low carbon conventional slab in SGJT. Steel Res Int. 2014;85(11):1490–1500. doi: 10.1002/srin.201300426
  • Lee S-M, Kim S-J, Kang Y-B, et al. Numerical analysis of surface tension gradient effect on the behavior of gas bubbles at the solid/liquid interface of steel. ISIJ Int. 2012;52(10):1730–1739. doi: 10.2355/isijinternational.52.1730
  • Tsai HT, Sammon WJ, Hazelton DE. Characterization and countermeasures for sliver defects in cold rolled products. Steelmaking Conference; Detroit (MI). Warrendale (PA): Iron and Steel Society, Inc; 1990. p. 49–59.
  • Sengupta J, Thomas B, Shin H-J, et al. A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs. Metall Mater Trans A. 2006;37(5):1597–1611. doi: 10.1007/s11661-006-0103-1
  • Lee GG, Shin HJ, Kim SH, et al. Prediction and control of subsurface hooks in continuous cast ultra-low-carbon steel slabs. Ironmak Steelmak. 2009;36(1):39–49. doi: 10.1179/174328108X369071
  • Okano S, Nishimura T, Ooi H, et al. Relation between large inclusions and growth directions of columnar dendrites in continuously cast slabs. Tetsu-To-Hagane. 1975;61(14):2982–2990. doi: 10.2355/tetsutohagane1955.61.14_2982
  • Long M, Zhang L, Lu F. A simple model to calculate dendrite growth rate during steel continuous casting process. ISIJ Int. 2010;50(12):1792–1796. doi: 10.2355/isijinternational.50.1792
  • Cicutti C, Bilmes P, Boeri R. Estimation of primary dendrite arm spacings in continuous casting products. Scr Mater. 1997;37(5):599–604. doi: 10.1016/S1359-6462(97)00148-6
  • Kurz W. About initial solidification of steel in continuous casting. Ia Metallurgia Italiana. 2008;100(7-8);56–64.
  • Suzuki M, Suzuki M, Nakada M. Perspectives of research on high-speed conventional slab continuous casting of carbon steels. ISIJ Int. 2001;41(7):670–682. doi: 10.2355/isijinternational.41.670
  • Wada T, Suzuki H, Mori T. High speed casting of 3 meters/minute on the NKK Fukuyama works’ no. 5 slab caster. Iron Steelmaker. 1987;14(9):31–38.
  • Yuan Q, Thomas B, Vanka S. Study of transient flow and particle transport in continuous steel caster molds: part I. fluid flow. Metall Mater Trans B. 2004;35(4):685–702. doi: 10.1007/s11663-004-0009-5
  • Liu R, Thomas BG, Sengupta J, et al. Measurements of molten steel surface velocity and effect of stopper-rod movement on transient multiphase fluid flow in continuous casting. ISIJ Int. 2014;54(10):2314–2323. doi: 10.2355/isijinternational.54.2314
  • Thomas BG, Yuan Q, Sivaramakrishnan S, et al. Mathematical modeling of iron and steel making processes. Comparison of four methods to evaluate fluid velocities in a continuous slab casting mold. ISIJ Int. 2001;41(10):1262–1271. doi: 10.2355/isijinternational.41.1262
  • Deng X-X, Xiong X, Wang X-H, et al. Effect of nozzle bottom shapes on level fluctuation and meniscus velocity in high-speed continuous casting molds. J Univ Sci Technol B. 2014;36(4):515–522.
  • Deng X, Ji C, Cui Y, et al. Flow pattern control in continuous slab casting moulds: physical modeling and plant trials. Ironmak Steelmak. 2016. doi:10.1080/03019233.03012016.01215666.
  • Wang S, Zhang L, Wang Q, et al. Effect of electromagnetic parameters on the motion and entrapment of inclusions in FC-mold continuous casting strands. Metall Res Technol. 2016;113(205):1–16.
  • Uhlmann DR, Chalmers B, Jackson KA. Interaction between particles and a solid-liquid interface. J Appl Phys. 1964;35(10):2986–2993. doi: 10.1063/1.1713142
  • Yamada W. Coagulation and trapping into solidified shell of nonmetallic inclusions in continuous casting mold of steel. CAMP-ISIJ. 1999;12(4):682–684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.