Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 5
315
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of in-flight reduction of magnetite concentrate by hydrogen

, , &
Pages 443-453 | Received 13 Apr 2017, Accepted 08 Sep 2017, Published online: 26 Nov 2017

References

  • Choi ME. Suspension hydrogen reduction of iron ore concentrate: a dissertation for the degree of Doctor of Philosophy. Salt Lake: Department of Metallurgical Engineering, The University of Utah; 2010.
  • Takeuchi N, Nomura Y, Ohono K, et al. Kinetic analysis of spherical wostite reduction transported with CH4 gas. ISIJ Int. 2007;47(3):386–391. doi: 10.2355/isijinternational.47.386
  • Chen F, Mohassab Y, Zhang S, et al. Kinetics of the reduction of hematite concentrate particles by carbon monoxide relevant to a novel flash ironmaking process. Metall Mater Trans B. 2015;46(4):1716–1728. doi: 10.1007/s11663-015-0345-7
  • Wang H, Choi ME, Sohn HY. Intrinsic hydrogen reduction kinetics of magnetite concentrate particles relevant to a novel green ironmaking technology. 2nd International Symposium on High-Temperature Metallurgical Processin, San Diego, USA; 2011.p. 3–10.
  • Chen F, Mohassab Y, Jiang T, et al. Hydrogen reduction kinetics of hematite concentrate particles relevant to a novel flash ironmaking process. Metall Mater Trans B. 2015;46(3):1133–1145. doi: 10.1007/s11663-015-0332-z
  • Nakagawa H, Maeda T, Nishioka K, et al. Ironmaking – rapid reduction of fine iron ore transported with CH4 gas. Tetsu-to-hagane. 2005;91(6):521–527. doi: 10.2355/tetsutohagane1955.91.6_521
  • Sabat KC, Murphy AB. Hydrogen plasma processing of iron ore. Metall Mater Trans B. 2017;48(3):1561–1594. doi: 10.1007/s11663-017-0957-1
  • Sabat KC, Rajput P, Paramguru RK, et al. Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma Proc. 2014;34(1):1–23. doi: 10.1007/s11090-013-9484-2
  • Rajput P, Sabat KC, Paramguru RK, et al. Direct reduction of iron in low temperature hydrogen plasma. Ironmak Steelmak. 2014;41(10):721–731. doi: 10.1179/1743281214Y.0000000186
  • Sabat KC, Paramguru RK, Pradhan S, et al. Reduction of cobalt oxide (Co3O4) by low temperature hydrogen plasma. Plasma Chem Plasma Proc. 2015;35(2):387–399. doi: 10.1007/s11090-014-9602-9
  • Sabat KC, Paramguru RK, Mishra BK. Reduction of copper oxide by low-temperature hydrogen plasma. Plasma Chem Plasma Proc. 2016;36(4):1111–1124. doi: 10.1007/s11090-016-9710-9
  • Sabat KC, Paramguru RK, Mishra BK. Reduction of oxide mixtures of (Fe2O3+ CuO) and (Fe2O3+ Co3O4) by low-temperature hydrogen plasma. Plasma Chem Plasma Proc. 2017;37(4):979–995. doi: 10.1007/s11090-017-9818-6
  • Wang H, Sohn HY. Hydrogen reduction kinetics of magnetite concentrate particles relevant to a novel flash ironmaking process. Metall Mater Trans B. 2013;44(1):133–145. doi: 10.1007/s11663-012-9754-z
  • Hughes R, Kam EKT, Moghadam-zadeh H. The reduction of iron ore by hydrogen and carbon monoxide and their mixtures. Thermochim Acta. 1982;59:361–377. doi: 10.1016/0040-6031(82)87158-X
  • Lien HO, El-Mehairy AE, Ross HU. A two-zone theory of iron-oxide reduction. J Iron Steel Inst. 1971;10(2):541–545.
  • Abolpour B, Afsahi MM, Azizkarimi M. Reduction kinetics of magnetite concentrate particles by carbon monoxide, Min. Proc Extract Metall. 2016. doi:10.1080/03719553.2016.1277094.
  • Ernst WG. Earth materials. Englewood Cliffs (NJ): Prentice-Hall; 1969.
  • Ishihara S, Ohmoto H, Anhaeusser CR, et al. Discovery of the oldest oxic granitoids in the Kaapvaal Craton and its implications for the redox evolution of early Earth. 2006. doi.org/10.1130/2006.1198(04).
  • Birken P. Numerical methods for the unsteady compressible Navier–Stokes equations: a dissertation for the degree of Doctor of Philosophy. Kassel: The University of Kassel; 2012.
  • Launder BE, Reece GJ, Rodi W. Progress in the development of a Reynolds-stress turbulent closure. J Fluid Mech. 1975;68(3):537–566. doi: 10.1017/S0022112075001814
  • Wilcox DC. Turbulence modeling for CFD. California: DCW Industries; 2007.
  • Cheng P. Two-dimensional radiating gas flow by a moment method. AIAA J. 1964;2:1662–1664. doi: 10.2514/3.2645
  • Siegel R, Howell JR. Thermal radiation heat transfer. Washington (DC): Hemisphere Publishing Corporation; 1992.
  • Sutherland W. The viscosity of gases and molecular force. Philos Mag. 1893;36:507–531. doi: 10.1080/14786449308620508
  • Abolpour B, Afsahi MM, Yaghobi M, et al. Interaction of heat transfer and gas flow in a vertical hot tube. Heat Mass Trans. 2017;53(7):2409–2417. doi: 10.1007/s00231-017-1991-x
  • Hosseini SMJ, Soltani Goharrizi A, Abolpour B. Numerical study of aerosol particle deposition in a simple and converging-diverging micro-channel with slip boundary condition at the wall. Particuology. 2014;13:100–105. doi: 10.1016/j.partic.2013.03.004
  • Rafee R, Rahimzadeh H, Ahmadi G. Numerical simulations of airflow and droplet transport in a wave-plate mist eliminator. Chem Eng Res Des 2010;8(8):1393–1404. doi: 10.1016/j.cherd.2010.03.001
  • Abolpour B, Afsahi MM, Soltani Goharrizi A, et al. 2017. Study of the motion and deposition of micro particles in a vertical tube containing uniform gas flow. Heat Mass Trans. doi:10.1007/s00231-017-2079-3.
  • Holman JP. Heat transfer. New York (NY): McGraw-Hill; 1981.
  • Chen CJ, Jaw SY. Fundamentals of turbulence modeling. Washington: Taylor & Francis; 1998.
  • Levenspiel O. Chemical reactor engineering. New York (NY): John Wiley and Sons; 1999.
  • Ansari V, Soltani Goharrizi A, Jafari S, et al. Numerical study of solid particles motion and deposition in a filter with regular and irregular arrangement of blocks using Lattice Boltzmann method. Comput Fluids. 2015;108:170–178. doi: 10.1016/j.compfluid.2014.11.022
  • Morsi SA, Alexander AJ. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 1972;55(2):193–208. doi: 10.1017/S0022112072001806
  • Ounis H, Ahmadi G, Mclaughlin JB. Brownian diffusion of submicrometer particles in the viscous sub layer. J Colloid Interface Sci. 1991;143:266–277. doi: 10.1016/0021-9797(91)90458-K
  • http://aerosol.ees.ufl.edu/Thermophoresis/section02_b.html
  • Molgaard J, Smeltzer WW. Thermal conductivity of magnetite and hematite. J Appl Phys. 1971;42:3644–3647. doi: 10.1063/1.1660785

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.