Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 8
237
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Optimisation of the MgO/Al2O3 ratio of high-alumina BF slag based on MOPSO algorithm

, , &
Pages 712-720 | Received 03 Jul 2017, Accepted 17 Oct 2017, Published online: 30 Nov 2017

References

  • Zhang XF, Jiang T, Xue XX, et al. Influence of MgO/Al2O3 ratio on viscosity of blast furnace slag with high Al2O3 content. Steel Res Int. 2016;87:87–94. doi: 10.1002/srin.201400523
  • Ma XD, Chen M, Xu HF, et al. Sulphide capacity of CaO-SiO2-Al2O3-MgO system relevant to low MgO blast furnace slags. ISIJ Int. 2016;56:2126–2131. doi: 10.2355/isijinternational.ISIJINT-2016-274
  • Shen FM, Zheng HY, Jiang X, et al. Influence of Al2O3 in blast furnace smelting and discussions on proper w( MgO) /w( Al2O3) ratio. Iron Steel. 2014;49:1–6.
  • Tang DJ, Wang YS, Wang Y, et al. Practice of lowering MgO of slag in Lai steel’s 3200m3 BF. Ironmaking. 2015;34:31–34.
  • Shen FM, Wen QL, Jiang X, et al. Comparison of blast furnace slag (MgO) / (Al2O3) home and aboard. Ironmaking. 2015;34:1–3.
  • Zhang QCh., et al. Research on mixture experimental designs. J Guangzhou Univ. 2005;4:381–385.
  • Buddington AF, Woodford AO, et al. Temperature-viscosity relations in the ternary system, CaO-Al2O3-SiO2. J Geol. 1924;32:174–176. doi: 10.1086/623078
  • Kondratiev A, Hayes PC, Jak E., et al. Development of a quasi-chemical viscosity model for fully liquid slags in the Al2O3–CaO–‘FeO’–MgO–SiO2 system. Part 1. Description of the model and its application to the MgO, MgO–SiO2, Al2O3–MgO and CaO–MgO subsystems. ISIJ Int. 2006;46:359–367. doi: 10.2355/isijinternational.46.359
  • Kondratiev A, Hayes PC, Jak E., et al. Development of a quasi-chemical viscosity model for fully liquid slags in the Al2O3-CaO-'FeO'-MgO-SiO2 system. Part 2. A review of the experimental data and the model predictions for the Al2O3-CaO-MgO, CaO-MgO-SiO2 and Al2O3-MgO-SiO2 systems. ISIJ Int. 2006;46:368–374. doi: 10.2355/isijinternational.46.368
  • Kondratiev A, Hayes PC, Jak E., et al. Development of a quasi-chemical viscosity model for fully liquid slags in the Al2O3–CaO–‘FeO’–MgO–SiO2 system. Part 3. Summary of the model predictions for the Al2O3–CaO–MgO–SiO2 system and its subsystems. ISIJ Int. 2008;48:7–16. doi: 10.2355/isijinternational.48.7
  • Park H, Park JY, Kim GH, et al. Effect of TiO2, on the viscosity and slag structure in blast furnace type slags. Steel Res Int. 2012;83:150–156. doi: 10.1002/srin.201100249
  • Mills KC, Sridhar S., et al. Viscosity of ironmaking and steelmaking slags. Ironmak Steelmak. 1999;26:262–268. doi: 10.1179/030192399677121
  • Shankar A, Görnerup M, Lahiri AK, et al. Estimation of viscosity for blast furnace type slags. Ironmak Steelmak. 2013;34:477–481. doi: 10.1179/174328107X17467
  • Gan L, Lai C., et al. A general viscosity model for molten blast furnace slag. Metall Mater Trans B.. 2013;45:875–888. doi: 10.1007/s11663-013-9983-9
  • Fincham CJB, Richardson FD., et al. The behaviour of sulphur in silicate and aluminate melts. Proc R Soc A. 1954;223:40–62. doi: 10.1098/rspa.1954.0099
  • Yang XM, Jiao JS, Ding RC, et al. A thermodynamic model for calculating sulphur distribution ratio between CaO-SiO2-MgO-Al2O3 ironmaking slags and carbon saturated hot metal based on the ion and molecule coexistence theory. ISIJ Int. 2009;49:1828–1837. doi: 10.2355/isijinternational.49.1828
  • Huang XG., et al. Principles of iron and steel metallurgy. Beijing, China: Metallurgical Industry Press; 2008.
  • Hou D, Jiang ZH, Dong YW, et al. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmak Steelmak. 2016;43:521–525. doi: 10.1080/03019233.2015.1110920
  • Shi CB, Guo HJ, Ding RC, et al. A thermodynamic model for calculation of sulphur distribution ratio between CaO-SiO2-MgO-Al2O3 slags and carbon saturated hot metal. Chin J Process Eng. 2010;10:158–164.
  • Xia LI, Ding YH, Huang BF., et al. A thermodynamic model for calculation of sulphur distribution ratio between CaO-SiO2-Al2O3-MgO-TiO2 BF slag and hot metal. J Iron Steel Res. 2012;24:19–23.
  • Jeyadevi S, Baskar S, Babulal CK, et al. Solving multiobjective optimal reactive power dispatch using modified NSGA-II. Electr Power Energy Syst. 2011;33:219–228. doi: 10.1016/j.ijepes.2010.08.017
  • Rezaei F, Safavi HR, Mirchi A, et al. f-MOPSO: An alternative multi-objective PSO algorithm for conjunctive water use management. J Hydro-Environ Res. 2017;14:1–18. doi: 10.1016/j.jher.2016.05.007
  • Coello CAC, Pulido GT, Lechuga MS., et al. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput. 2004;8:256–279. doi: 10.1109/TEVC.2004.826067
  • Wu S, Huang W, Kou M, et al. Influence of Al2O3 content on liquid phase proportion and fluidity of primary slag and final slag in blast furnace. Steel Res Int. 2014;86:550–556. doi: 10.1002/srin.201400158
  • Feng C, Chu MS, Tang J, et al. Effect of CaO/SiO2 and Al2O3 on viscous behaviors of the titanium‐bearing blast furnace slag. Steel Res Int. 2016;87:1274–1283. doi: 10.1002/srin.201500355

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.