Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 1
6,885
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Titanium microalloyed steels

ORCID Icon
Pages 1-55 | Received 07 Feb 2018, Accepted 24 Feb 2018, Published online: 05 Apr 2018

References

  • Pickering FB. In: Baker TN, editors. Titanium technology in microalloyed steels. London: The Institute of Materials; 1997. p. 12–43.
  • Cochrane RC. Phase transformations in microalloyed high strength low alloy (HSLA) steels. In: Pereloma E, Edmonds DV, editors. Phase transformations in steels. Woodhead Publishing, Oxford; 2012; vol. 2; p. 153–212.
  • Baker: TN. Processes, microstructure and properties of vanadium microalloyed steels. Mater Sci Technol. 2009;25:1083–1107.
  • Baker TN. Role of zirconium in microalloyed steels: a review. Mater SciTechnol. 2015;31:265–294.
  • Baker TN. Microalloyed steels. Ironmaking Steelmaking. 2016;43:264–307.
  • McQuillan AD, McQuillan MK. Titanium. London: Butterworths Scientific Publications; 1956.
  • Collings EW. The physical metallurgy of titanium alloys. Metals Park, OH: American Society for Metals; 1984.
  • www.csa.com/discoveryguides/titanium/overview.php
  • www.chemguide.co.uk/inorganic/extraction/titanium.htm
  • Comstock GF. Titanium and its effects on steel. J Ind Eng Chem. 1915;7:87–94.
  • Comstock GF. Titanium in iron and steel. New York: John Wiley; 1955.
  • Morrison WB. The use of vanadium in steel. Proceedings of Vanitec Symposium;Guilin;2000. p. 25–35.
  • Morrison WB. Microalloy steels – the beginning. Mater Sci Technol. 2009;25:1066–1073.
  • Morrison WB, Woodhead JH. Influence of small niobium additions on mechanical properties of commercial mild steels. J Iron Steel Inst. 1963;201:43–46.
  • Morrison WB. Influence of small niobium additions on properties of carbon–manganese steels. J Iron Steel Inst. 1963;201:317–325.
  • Hall EO. The deformation and ageing of mild steel. 3 Discussion of results. Proc Phys Soc. 1951;64B:747–753.
  • Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25–28.
  • Petch NJ. The fracture of metals. Prog Met Phys. 1954;5:1–52.
  • Petch NJ. The ductile-cleavage transition in alpha iron. In: Averback BL, et al., editors. Proceedings of the Swampscott Conference on ‘Fracture’;New York: John Wiley; 1959. p. 54–64.
  • Beiser CA. The effect of small columbium additions to semi killed, medium carbon steels. ASM preprint no. 138, 1959, Metals Park, OH, American Society of Metals.
  • Hart PHM, Ferguson G. The role of titanium on the weldability of microalloyed structural steels. In: Baker TN, editor. Titanium technology in microalloyed steels. London: Institute of Materials; 1997. p. 169–179.
  • High-strength structural and high-strength low alloy steels. In: Properties and selection: irons, steels and high performance alloys. ASM Metals Handbook. 10th ed. Vol. 1. p. 403–423.
  • Jönsson S. Assessment of the Fe–TiC system, calculation of the Fe–TiN system, and prediction of the solubility limit of Ti(C,N) in liquid Fe. Metall Mater Trans B. 1998;29:371–384.
  • http://education.jlab.org/itselemental/ele022.html
  • http://metalpedia.asianmetal.com/metal/titanium/resources&production.shtml
  • http://titanium.com/technical-data/history-of-titanium/
  • Rutley’s elements of mineralogy. 25th ed. (ed. H. H. Read), London: Thomas Murby &Co; 1953.
  • Chen GZ, Fray DI, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407:361–364.
  • Narita K. Physical chemistry of group-IVA (Ti, Zr), group-VA(V, Nb, Ta) and rare earths in steel. Trans Iron Steel Inst Japan. 1975;15:145–152.
  • http://en.wikipedia.org/wiki/Titanium#Chemical_properties
  • Hume-Rothery W, Smallman RE, Howarth CW. The structure of metals and alloys. 5th ed.London: The Institute of Metals; 1969. p. 262.
  • Schwope AD. A general comparison of the metallurgy of zirconium with that of better known commercial metals. In: Symposium ‘Zirconium and Zirconium Alloys’;Cleveland,OH: American Society of Metals; 1953. p. 111.
  • Goldschmidt HJ. Interstitial alloys. London: Butterworths; 1957.
  • Andrews KW, Hughes H. Hexagonal carbide and nitride phases and their occurrence in some alloy steels. J Iron Steel Inst. 1959;193:304–311.
  • Si Z, Wang Z, Liu P, et al. Effects of B and Ti on the toughness of HSLA steel weld. Chin J Met Sci Technol. 1992;8:294–298.
  • Munro RG. Material properties of titanium diboride. J Res Nat Inst Stand Technol. 2000;105:709–720.
  • Hua MI, Garcia CI, DeArdo AJ. Multiphase precipitates in interstitial-free steels. Scripta Metall Mater. 1993;28:973–978.
  • Aminorroaya S, Dippenaar R. TEM characterization of precipitates in the segregated regions of a low-carbon, low-manganese, titanium-added steel. J Micro. 2007;227:92–97.
  • Chaus AS, Dománková M. Precipitation of secondary carbides in M2 high speed steel modified with titanium diboride. J Mater Eng Perfom. 2013;22:412–420.
  • Agarwal A, Dahotre NB. Synthesis of boride coating on steel using high energy density processes: comparative study of evolution of microstructure. Mater Char. 1999;42:31–44.
  • Ohtani H, Hasebe M, Ishida K, et al. Calculation of Fe–C–B ternary phase diagram. Trans ISIJ. 1988;28:1043–1050.
  • Tanaka K, Saito T. Phase equilibria in TiB2-reinforced high modulus steel. J Phase Equil. 1999;20:207–214.
  • Raghavan V. B–Fe–Ti (boron–iron–titanium). J Phase Equilib. 2003;24:451–454.
  • Antoni-Zdziobek A, Gospodinova M, Bonnet F, et al. Solidification paths in the iron-rich part of the Fe–Ti–B ternary system. J Alloy Compds. 2016;657:302–312.
  • Chen S, Seda P, Krugla M, et al. High-modulus steels reinforced with ceramic particles through ingot casting process. Mater Sci Technol. 2016;32:992–1003.
  • Orowan E. Internal stresses in metals and alloys. London: Institute of Metals; 1948. p. 451–457.
  • Ashby MF. The hardening of metals by non-deforming particles. Z Metallkd. 1964;55:5–17.
  • Oh DW, Olson DL, Frost RH. The influence of boron and titanium on low carbon steel weld metal. Weld J. 1990;69(4):S151–S158.
  • Murray JL, Wreidt HA. ‘ASM handbook’, Alloy phase diagrams, 2–324, 3; 1992, Materials Park, OH, ASM International.
  • Smellie AM, Bell HB. Titanium deoxidation reactions in liquid iron. Can Metall Quart. 1972;11:351–361.
  • Cha WY, Miki T, Sasaki Y, et al. Identification of titanium oxide phases equilibrated with liquid Fe–Ti alloy based on EBSD analysis. ISIJ Int. 2006;46:987–995.
  • Mutale CT, Tuling AS, Verryn SMC. TEM study of solid titanium oxides inclusions in steel melt at 1600°C. VII International Conference on Molten Slags Fluxes and Salts;The South African Institute of Mining and Metallurgy; 2004. p. 293–297.
  • Xiao J, Jiag B, Huang K, et al. Structural and thermodynamic properties of TiCxNyOz solid solution: experimental study and first-principles approaches. Metall Mater Trans A. 2016;47A:4721–4731.
  • Murray JL. The S−Ti (sulfur–titanium) system. Bull Alloy Phase Dia. 1986;7(2):156–100.
  • Walder P, Pelton AD. Thermodynamic modeling of the Fe–S system. J Phys Equil Diff. 2005;26:23–38.
  • Raghaven V. Ternary systems containing iron and sulphur. Phase diagrams of ternary iron alloys Part 2. Calcutta: The Indian Institute of Metals; 1988.
  • Bochvar N, Rokhlin L. Iron systems: phase diagrams, crystallographic and thermodynamic data, iron–sulphur–titanium. Volume 11 ‘Subvolume D, Ternary Alloy Systems, Landolt-Börnstein – Group IV ‘Physical Chemistry’. Volume 11D5 of the series Landolt-Börnstein – Group IV Physical Chemistry. Ternary Alloy Systems; 2009. p. 534–554.
  • Baker TJ. Nonmetallic inclusions in maraging steels. J Iron Steel Inst. 1972;210:793–795.
  • Oikawa K, Mitsui H, Ishida K. A thermodynamic database for Fe–Cr–Mn–Ni–Ti–S–C–N system. Mater Sci Forum. 2005;500–501:711–718.
  • Kudielka H, Rohde K. Strukturuntersuchungen an Carbosulfiden von Titan und Zirkon. Z Krist. 1960;114:447–456.
  • Hua M, Garcia CI, DeArdo AJ. Precipitation behavior in ultra-low-carbon steels containing titanium and niobium. Metall Mater Trans A. 1997;28:1769–1780.
  • Liu WJ, Yue S, Jonas JJ. Characterization of Ti carbosulphide precipitation in Ti microalloyed steels. Metall Trans A. 1989;20:1907–1915.
  • Bandi WR, Krapf G. Identification and determination of titanium sulphide and carbosulphide compounds in steel. Analyst. 1979;104:812–821.
  • Mizui N, Takayama T, Sekine K. Effect of Mn on solubility of Ti-sulfide and Ti-carbosulfide in ultra-low C steels. ISIJ Int. 2008;48:845–850.
  • Ball CJ. X-ray powder diffraction patterns of titanium carbosulphide and τ titanium sulphide. Metal Sci. 1984;18:577–579.
  • Wilson PR, Chen Z. TEM characterisation of iron titanium sulphide in titanium- and niobium-containing low manganese steel. Scripta Mater. 2007;56:753–756.
  • Dumitrescu LFS, Hillert M. Reassessment of the solubility of TiC and TiN in Fe. ISIJ Int. 1999;39:84–90.
  • Matlock DK, Speer JG. Microalloying concepts and application in long products. Mater Sci Technol. 2009;25:1118–1125.
  • Pereloma EV, Timokhina IB, Russell KF, et al. Characterization of clusters and ultrafine precipitates in Nb-containing C–Mn–Si steels. Scripta Mater. 2006;54:471–476.
  • Deschamps A, Danoix F, De Geuser F, et al. Low temperature precipitation kinetics of niobium nitride platelets in Fe. Mater Lett. 2011;65:2265–2268.
  • Danoix F, Epicier T, Vurpillot F, et al. Atomic-scale imaging and analysis of single layer GP zones in a model steel. J Mater Sci. 2012;47:1567–1571.
  • Kostryzhev G, Al Shahrani A, Zhu C, et al. Effect of niobium clustering and precipitation on strength of an NbTi-microalloyed ferritic steel. Mater Sci Eng A. 2014;607:226–235.
  • Breen AJ, Xie KY, Moody MP, et al. Resolving the morphology of niobium carbonitride nano-precipitates in steel using atom probe tomography. Microsc Microanal. 2014;20:1100–1110.
  • Pereloma EV, Kostryzhev AG, AlShahrani A, et al. Effect of austenite deformation temperature on Nb clustering and precipitation in microalloyed steel. Scr Mater. 2014;75:74–77.
  • Xie KY, Zheng T, Cairney JM, et al. Strengthening from Nb-rich clusters in a Nb-microalloyed steel. Scr Mater. 2012;66:710–713.
  • Kapoor M, O’Malley R, Thompson GB. Atom probe tomography study of multi-microalloyed carbide and carbo-nitride precipitates and the precipitation sequence in Nb–Ti HSLA steels. Metall Mater Trans A. 2016;47:1984–1995.
  • Irvine KJ, Pickering FB, Gladman T. Grain-refined C–Mn steels. J Iron Steel Inst. 1967;205:161–182.
  • Balasubramanian K, Kroupa A, Kirkaldy JS. Experimental investigation of the thermodynamics of the Fe–Ti–C austenite and the solubility of titanium carbide. Metall Trans A. 1992;23:709–727.
  • Ohtani H, Tanaka T, Hasebe M, et al. Calculation of the Fe–C–Ti ternary phase diagram. CALPHAD. 1988;12:225–246.
  • Gladman T. Microalloyed steels. London: Institute of Materials; 1997.
  • Mori T, Tokizane M, Yamaguchi K, et al. Thermodynamic properties of niobium carbides and nitrides in Steels’, Tetsu To Hagane. 1968;54:763–776.
  • Matsuda S, Okumura N. Effect of distribution of TiN precipitate particles on austenite grain-size of Low-carbon low-alloy steels. Trans Iron Steel Inst Japan. 1978;18:198–205.
  • Wada H, Pehlke RD. Nitrogen solubility and nitride formation in austenitic Fe–Ti Alloys. Metall Trans. 1985;16:815–822.
  • Kunze J, Beyer B, Oswald S, et al. Thermodynamic data of the formation of titanium nitride in iron. Steel Res Int. 1995;66:161–166.
  • Turkdogan ET. Causes and effects of nitride and carbonitride precipitation during continuous casting. Iron Steelmaking. 1989;16:61–75.
  • Frage NR, Gurvich VG, Tomilov VI. Solubility of nitrogen in Fe–Ti system. Steel in the USSR. 1974;4:462–463.
  • Morita Z, Kunisada K. Solubility of nitrogen and equilibrium of titanium nitride forming reaction in liquid Fe–Ti alloys. Trans ISIJ. 1978;18:648–654.
  • Evans DB, Pehlke RD. Equilibria of nitrogen with refractory metals titanium zirconium columbium vanadium and tantalum in liquid iron. Trans Metall Soc AIME. 1965;233(8):1620–1624.
  • Ohtani H, Hillert M. A thermodynamic assessment of the Ti–N system. CALPHAD. 1990;14:289–306.
  • Kim WY, Jo JO, Chung TI, et al. Thermodynamics of titanium, nitrogen and TiN formation in liquid iron. ISIJ Int. 2007;47:1082–1089.
  • Steelmaking Data Sourcebook, The Japan Society for Promotion of Science, The 19th Committee in Steelmaking. Amsterdam, Gordon and Breach, 1988.
  • Jang JM, Seo SH, Han JS, et al. Reassessment of TiN (s)=Ti+N equilibration in liquid iron. ISIJ Int. 2015;55:2318–2324.
  • Jo JO, Kim WY, Lee CO, et al. Thermodynamic interaction between chromium and titanium in liquid Fe–Cr alloys containing 30 mass% Cr. ISIJ Int. 2010;50:1373–1379.
  • Ishii F, Fuwa T. Effect of alloying element on the solubility of nitrogen in liquid iron. Tetsu-to-Hagané. 1982;68:1560–1568.
  • Kunze J. Solubility of titanium nitride in delta ferrite. Steel Res Int. 1991;62(10):430–432.
  • Kunze J. Solubility product of titanium nitride in γ-iron. Metal Sci. 1982;16:217–218.
  • Gorbachev II, Popov VV. Analysis of the solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: III. Solubility of carbides, nitrides, and carbonitrides in the Fe–Ti–C, Fe–Ti–N, and Fe–Ti–C–N systems. Phys Met Metall. 2009;108:484–495.
  • Kieffer R, Nowotny H, Neckel A, et al. Occurrence of miscibility gaps in cubic multicomponent carbides. Monatsh Chem. 1968;99:1020–1027.
  • Zou HL, Kirkaldy JS. Carbonitride precipitate growth in titanium/niobium microalloyed steels. Metall Trans A. 1991;22:1511–1524.
  • Zhou HL, Kirkaldy JS. Thermodynamic and experimental verificationof the carbonitride –austenite equilibrium in Ti–Nb microalloyed steels. Metall Trans A. 1992;23:651–657.
  • Rudy E. Boundary phase stability and critical phenomena in higher-order solid-solution systems. J Less Comm Met. 1973;33:43–70.
  • Inoue K, Ishikawa N, Ohnuma I, et al. Calculation of phase equilibria between austenite and (Nb, Ti, V) (C, N) in microalloyed steels. ISIJ Int. 2001;41:175–182.
  • Lee BJ. Thermodynamic assessment of the Fe–Nb–Ti–C–N system. Metall Mater Trans A. 2001;32:2423–2439.
  • Gorbachev II, Popov VV, Pasynkov AY. Thermodynamic simulation of the formation of carbonitrides in steels with Nb and Ti. Phys Met Metall. 2012;113:687–695.
  • Gorbachev II, Popov VV, Pasynkov AY. Thermodynamic modeling of carbonitride formation in steels with V and Ti. Phys Met Metall. 2012;113:974–981.
  • Liu ZK. Thermodynamic calculations of carbonitrides in microalloyed steels. Scr Mat. 2004;50:601–606.
  • Craven AJ, He K, Garvie LAJ, et al. Complex heterogeneous precipitation in titanium–niobium microalloyed Al-killed HSLA steels – I. (Ti,Nb)(C,N) particles. Acta Mater. 2000;48:3857–3868.
  • Frisk K. Thermodynamic modelling of multicomponent cubic Nb, Ti and V carbides/carbonitrides. CALPHAD. 2008;32:326–337.
  • Frisk K, Borggren U. Precipitation in microalloyed steel by model alloy experiments and thermodynamic calculations. Metall Mater Trans A. 2016;47:4806–4817.
  • Xu K, Thomas BG, O’Malley RJ. Equilibrium model of precipitation in microalloyed steels. Metall Mater Trans A. 2011;42:524–539.
  • Xu Y, Tang D, Song Y. Equilibrium modeling of (Nb, Ti, V)(C, N) precipitation in austenite of microalloyed steels. Steel Res Int. 2013;84:560–564.
  • Roy S, Patra S, Neogy S, et al. Prediction of inhomogeneous distribution of microalloy precipitates in continuous-cast high-strength, low-alloy steel slab. Met Mater Trans A. 2012;43:1845–1860.
  • Wang YL, Zhuo LC, Chen MW, et al. Thermodynamic model for precipitation of carbonitrides in microalloyed steels and its application in Ti–V–C–N system. Rare Met. 2016;35:735–741.
  • Raghavan V. C–Fe–N–Nb–Ti (carbon–iron–nitrogen–niobium–titanium). J Phase Equil Diff. 2013;34:140–142.
  • Sims CE. The non-metallic inclusions in steels. Trans Met Soc AIME. 1959;215:367–393.
  • Baker TJ, Charles JA. Morphology of manganese sulphides in steel. J Iron Steel Inst. 1972;210:702–706.
  • Swisher JH. Sulfur solubility and internal sulfidation of iron–titanium alloys. Trans TMS-AIME. 1968;242:2422–2439.
  • Turkdogan ET, Ignatowicz S, Pearson J. Solubility of sulphur in iron and iron–manganese alloys. J Iron Steel Inst. 1955;180:349–354.
  • Lui WJ, Jonas JJ. In: De Ardo AJ et al., Proceedings of an International Symposium on Processing, microstructure and properties of HSLA steels, 39; 1988. Warrendale, PA: Metallurgical Society of AIME.
  • Ardell AJ. Precipitation hardening. Metall Trans A. 1985;16:2131–2165.
  • Li Y, Li YQ, Fruehan RJ. Formation of titanium carbonitride from hot metal. ISIJ Int. 2001;41:1417–1422.
  • Liu Y-X, Zhang J-L, Zang G-H, et al. Influence of Ti(C0.3N0.7) on viscosity of blast furnace slags. Ironmaking Steelmaking. 2017;44:609–618.
  • Li Y, Crowther DN, Mitchell PS, et al. The evolution of microstructure during thin slab direct rolling processing in vanadium microalloyed steels. ISIJ Int. 2002;42:636–644.
  • Crowther DN, Morrison WB. Influence of hypostoichiometric additions of titanium on the properties of microalloyed structural steels. In: Baker TN, editor. Titanium technology in microalloyed steels. London: Institute of Materials; 1997. p. 44–64.
  • Chen Z, Lorretto MH, Cochrane RC. Nature of large precipitates in titanium-containing HSLA steels. Mater Sci Technol. 1987;3:836–844.
  • He K, Baker TN. The effects of small titanium additions on the mechanical properties and the microstructures of controlled rolled niobium-bearing HSLA plate steels. Mater Sci Eng A. 1993;A169:53–65.
  • Li PH, Ibraheem AK, Priestner R. Eutectic precipitation of (TiNbV)(CN) in cast, microalloyed low-C austenite and effects of reheating. Mater Sci Forum. 1998;284–286:517–526.
  • Baker TN, Li Y, Wilson JA, et al. Evolution of precipitates, in particular cruciform and cuboidal particles, during simulated direct charging of thin slab cast vanadium microalloyed steels. Mater Sci Technol. 2004;20:720–730.
  • Yuan SQ, Laing GL. Dissolving behaviour of second phase particles in Nb–Ti microalloyed steel. Mater Lett. 2009;63:2324–2326.
  • Edmonds DV, Honeycombe RWK. In: Russell KC, Aaronson HI, editors. Precipitation in iron-based alloys. Warrendale, PA: Metallurgical Society, AIME; 1978. p. 121–160.
  • Jack KH. The effects of substitutional alloying elements on the behaviour of interstitial solotes in iron. A review of current work at Newcastle. Scan J Metall. 1972;1:195–202.
  • Kirkwood DH, Atasoy OE, Keown SR. The structure of nitrided and annealed iron–titanium alloys. Metal Sci. 1974;8:49–55.
  • Jack DH. The structure of nitrided iron–titanium alloys. Acta Metall. 1976;24:137–146.
  • Cuddy LJ, Knechtel HE, Leslie WC. Elevated-temperature strengthening of iron alloys by titanium. Metall Trans. 1974;5:1999–2003.
  • Dunlop GL, Turner PJ. Atom-probe field-ion microscopy of mixed vanadium–titanium carbides in a low-alloy steel. Metal Sci. 1975;9:370–374.
  • Dunlop GL, Honeycombe RWK. Ageing characteristics of VC, TiC, and (V, Ti) C dispersions in ferrite. Met Sci. 1978;12:367–371.
  • Chechenin NG, Chezan AR, Craus CB, et al. Precipitate formation in low-temperature nitrided cold-rolled Fe94Ni4Ti2 and Fe93Ni4Cr3 films. Metall Mater Trans A. 2002;33:3075–3087.
  • Timokhina IB, Hodgson PD, Ringer SP, et al. Application of advanced analytical techniques to study structure–property relationship of hot rolled high strength low alloy steel. Mater Sci Technol. 2011;27:305–309.
  • Angseryd J, Liu F, Andren HO, et al. Quantitative APT analysis of Ti(C,N). Ultramicroscopy. 2011;111:609–614.
  • Hirata A, Fujita T, Wen YR, et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. Nat Mater. 2011;10:922–926.
  • Larson DJ, Maziasz PJ, Kim I-S, et al. Three-dimensional atom probe observation of nanoscale titanium–oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti+Y2O3 ferritic alloy. Scripta Mater. 2001;44:359–364.
  • Mukherjee S, Timokhina IB, Zhu C, et al. Three-dimensional atom probe microscopy study of interphase precipitation and nanoclusters in thermomechanically treated titanium–molybdenum steels. Acta Mater. 2013;61:2521–2530.
  • Mukherjee S, Timokhina IB, Zhu C, et al. Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel. J Alloys Compds. 2017;690:621–632.
  • Shanmugam S, Tanniru M, Misra RDK, et al. Microalloyed V–Nb–Ti and V steels Part 2 – precipitation behaviour during processing of structural beams. Mater Sci Technol. 2005;21:165–177.
  • Li X, Wang Z, Deng X, et al. The determining role of finish cooling temperature on the microstructural evolution and precipitation behavior in an Nb–V–Ti microalloyed steel in the context of newly developed ultrafast cooling. Metall Mater Trans A. 2016;47:1929–1938.
  • McCann J, Ridal KA. High temperature decomposition of austenite in alloy steels. J Iron Steel Inst. 1964;202:441–447.
  • Jang JH, Heo Y-U, Lee C-H, et al. Interphase precipitation in Ti–Nb and Ti–Nb–Mo bearing steel. Mater Sci Technol. 2013;29:309–313.
  • Aaronson HI, Plichta MR, Franti GW, et al. Precipitation at interphase boundaries. Metall Mater Trans. 1978;9:393–371.
  • Gray JM, Yeo RBG. Columbium carbonitride precipitation in low alloy steels with particular emphasis on “precipitate row” formation. Trans Am Soc Met. 1968;61:255–269.
  • Davenport AT, Honeycombe RWK. Precipitation of carbides at gamma-alpha boundaries in alloy steels. Proc Roy Soc. 1971;322:191–205.
  • Freeman S. Interphase precipitation in a titanium steel. In: Effects of second-phase particles on the mechanical properties of steel. London: The Iron and Steel Institute; 1971. p. 152–156.
  • Freeman S, Honeycombe RWK. Strengthening of titanium steels by carbide precipitation. Met Sci. 1977;11:59–64.
  • Yen HW, Chen CY, Wang TY, et al. Orientation relationship transition of nanometre sized interphase precipitated TiC carbides in Ti bearing steel. Mater Sci Technol. 2010;26:421–430.
  • Dunne DP. Review: Interaction of precipitation with recrystallisation and phase transformation in low alloy steels. Mater Sci Technol. 2010;26:410–420.
  • Irvine J, Baker TN. The influence of rolling variables on the strengthening mechanisms operating in niobium steels. Mater Sci Eng. 1984;64:123–134.
  • Hong SG, Kang KB, Park CG. Strain-induced precipitation of NbC in Nb and Nb–Ti microalloyed HSLA steels. Scripta Mater. 2002;46:163–168.
  • Ma X, Miao C, Langelier B, et al. Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb–Ti microalloyed steel. Mater Design. 2017;132:244–249.
  • Cottrell AH. Dislocations and plastic flow in crystals. Oxford: Clarendon Press; 1964.
  • Baker TN. Determination of the friction stress from microstructural measurements. In: Baker TN, editor. Yield, flow and fracture of polycrystals. London: Applied Science Publishers; 1983. p. 235–273.
  • Li Y, Bushby AJ, Dunstan DJ. The Hall–Petch effect as a manifestation of the general size effect. Proc R Soc. 2016;A472(1290), Article Number: 20150890.
  • Seto K, Funakawa Y, Kaneko S. Hot rolled high strength steels for suspension and chassis parts “NANOHITEN” and “BHT® Steel”. JFE Tech Report 10, 19–25; 2007.
  • Kocks UF. Alloy superposition of alloy hardening, strain hardening and dynamic recovery. In: Haasen P, Gerold V, Kostorz G, editors. Proceedings of the Fifth International Conference on Strength of Metals and Alloys. Oxford: Pergamon Press; 1980. p. 1661–1680.
  • Jian L, Fuyu S, WenChong X. On the evaluation of yield strength for microalloyed steels. Scr Metall Mater. 1990;24:1393–1398.
  • Petch NJ. The influence of grain boundary carbide and grain size on the cleavage strength and impact transition temperature of steel. Acta Metall. 1986;34:1387–1393.
  • Martin JW. Micromechanisms in particle-hardened alloys. Cambridge: Cambridge University Press; 1980. p. 150.
  • Doherty RD, Martin JW. Effect of a dispersed second phase on recrystallization of aluminium–copper alloys. J Inst Met. 1962–1963;91:332–338.
  • Zener C, Smith CS. Grains, phases and interfaces – an interpretation of microstructure. Trans AIME. 1948;175:15–51.
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. 2nd ed.Oxford: Elsevier Ltd; 2004.
  • Gladman T. On the theory of the effect of precipitate particles on grain growth in metals. Proc Roy Soc A. 1966;294:298–309.
  • Cuddy LJ, Raley JC. Austenite grain coarsening in microalloyed steels. Metall Trans A. 1983;14:1989–1995.
  • Manohar PA, Ferry M, Chandra T. Five decades of the Zener equation. ISIJ Int. 1998;38:913–924.
  • Gladman T, McIvor ID, Pickering FB. Effect of carbide and nitride particles on recrystallization of ferrite. J Iron Steel Inst. 1971;209:380–390.
  • Gawne DT, Higgins GT. Secondary recrystallization in a steel containing coarse carbides and its relation to primary recrystallization structure. J Iron Steel Inst. 1971;209:562–566.
  • Gawne DT, Higgins GT. Associations between spherical particles of two dissimilar phases. J Mat Sci. 1971;6:403–412.
  • Vega MI, Medina SF, Quispe A, et al. Recrystallisation driving forces against pinning forces in hot rolling of Ti-microalloyed steels. Mater Sci Eng A. 2006;423:253–261.
  • Gómez M, Rancel L, Medina SF. Effects of Nb, V, Ti and Al on recrystallisation/precipitation interaction in microalloyed steels. Mater Sci Forum. 2010;638–642:3388–3393.
  • Erasmus L. Effect of aluminium additions on forgeability austenite grain coarsening temperature + impact properties of steel. J Iron Steel Inst. 1964;202(1):32–41.
  • Erasmus L. Effect of small additions of vanadium on austenitic grain size forgeability + impact properties of steel. J Iron Steel Inst. 1964;202:128–134.
  • Gladman T, Pickering FB. Grain coarsening of austenite. J Iron Steel Inst. 1967;205:653–664.
  • Phillips R, Chapman JA. Methods of determining austenite grain size, and grain coarsening of mild steels containing niobium and titanium. In: Metallurgical developments in carbon steels, Special Report 81, London: Iron Steel Institute; 1963. p. 60–64.
  • George TG, Irani JJ. Control of austenite grain size by additions of titanium. J Aust Inst Met. 1968;13:94–106.
  • Halley JW. Grain-growth inhibitors in steel. Trans AIME. 1946;167:224–236.
  • Houdremont E, Bennek H, Schrader H. Hardening and tempering of steels containing carbides of low solubility, especially vanadium steels. Trans AIMME. 1935;116:260–288.
  • Haynes EJ, Baker TN. Tempered low-carbon titanium steels. Met Technol. 1981;8:413–419.
  • Kuo K. Alloy carbides precipitated during the 4th stage of tempering. JISI. 1956;184:258–268.
  • Cahoon JR, Broughton WH, Kutzak AR. The determination of yield strength from hardness measurements. Metall Trans. 1971;2:1979–1983.
  • Wei FG, Hara T, Tsuzaki K. High-resolution transmission electron microscopy study of crystallography and morphology of TiC precipitates in tempered steel. Philos Mag. 2004;84(17):1735–1751.
  • Roy S, Karmakar A, Mukherjee S, et al. Effect of starting microstructure on austenite grain sizes developed after reheating of HSLA steel. Mater Sci Technol. 2014;30:1142–1153.
  • Ardell AJ. The effect of volume fraction on particle coarsening: theoretical considerations. Acta Metall. 1972;20:61–71.
  • Martin JW, Doherty RD. Stability of microstructure in metallic systems. Cambridge: Cambridge University Press; 1976. p. 173–209.
  • Baldin A. Progress in Ostwald ripening theories and their applications to nickel-base superalloys part I: Ostwald ripening theories. J Mater Sci. 2002;37:2172–2202.
  • Jang JH, Lee CH, Han HN, et al. Modelling coarsening behaviour of TiC precipitates in high strength, low alloy steels. Mater Sci Technol. 2013;29:1074–1079.
  • Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int. 2004;44:1945–1951.
  • Wang ZQ, Zhang H, Guo CH, et al. Evolution of (Ti, Mo)C particles in austenite of a Ti–Mo-bearing steel. Mater Des. 2016;109:361–366.
  • Akben MG, Bacroix B, Jonas JJ. Effect of vanadium and molybdenum addition on high temperature recovery, recrystallization and precipitation behavior of niobium-based microalloyed steels. Acta Metall. 1983;31:161–174.
  • Uemori R, Chijiiwa R, Tamehiro H, et al. AP-FIM study on the effect of Mo addition on microstructure in Ti-Nb steel. Appl Surf Sci. 1994;76–77:255–260.
  • Funakawa Y, Seto K. Coarsening behavior of nanometer-sized carbides in hot-rolled high strength sheet steel. Mater Sci Forum. 2007;539–543:4813–4818. 183.
  • Jang JH, Lee CH, Heo YU, et al. Stability of (Ti, M) C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations. Acta Mater. 2012;60:208–217.
  • Enloe CM, Findley KO, Parish CM, et al. Compositional evolution of microalloy carbonitrides in a Mo-bearing microalloyed steel. Scripta Mater. 2013;68:55–58.
  • Wang ZQ, Zhang H, Guo CH, et al. Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels. J Mater Sci. 2016;51:4996–5007.
  • Chen CY, Yen HW, Kao FH, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides. Mater Sci Eng A. 2009;499:162–166.
  • Strid J, Easterling KE. On the chemistry and stability of complex carbides and nitrides in microalloyed steels. Acta Metall. 1985;33:2057–2074.
  • Subramanian SV, Weatherly GC. Precipitation behaviour of Ti–V and Ti–Nb microalloyed steels. In: Baker TN, editor. Titanium technology in microalloyed steels. London: Institute of Materials; 1997. p. 133–149.
  • He K, Baker TN. Zr-containing precipitates in a Ti–Nb microalloyed HSLA steel containing 0.016wt-% Zr addition. Mater Sci Eng A. 1996;215:57–66.
  • He K, Baker TN. Complex carbonitrides in multi-microalloyed Ti-containing HSLA steel and their influence on the mechanical properties. In: Baker TN, editor. Titanium technology in microalloyed steels. London: Institute of Materials; 1997. p. 115–132.
  • He K, Baker TN. Effect of zirconium additions on austenite grain coarsening of C–Mn and microalloy steels. Mater Sci Eng A. 1998;256:111–119.
  • Carretero Olalla V, Bliznuk V, Sanchez N, et al. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters. Mater Sci Eng A. 2014;604:46–56.
  • Grajcar A. Thermodynamic analysis of precipitatin processes in Nb–Ti microalloyed Si–Al TRIP steels. J Therm Anal Calorim. 2014;118:1011–1020.
  • Beres M, Weich TE, Hulka K, et al. TEM investigations of fine niobium precipitates in HSLA steel. Steel Res Int. 2004;75:753–758.
  • Baker TN. The structure of controlled-rolled and continuously cooled low carbon vanadium steels. J Iron Steel Inst. 1973;211:502–510.
  • Chih-Yuan C, Chien-Chon C, Jer-Ren Y. Dualism of precipitation morphology in high strength low alloy steel. Mater Sci Eng A. 2015;626:74–79.
  • Fu J, Li GQ, Mao XP, et al. Nanoscale cementite precipitates and comprehensive strengthening mechanism of steel. Metall Mater Trans A. 2011;42:3797–3812.
  • Mao XP. Microalloyed technology on thin slab casting and rolling. Beijing: Metallurgical Industry Press; 2008. p. 88–90.
  • Tirumalasetty GK, Fang CM, Xu Q, et al. Novel ultrafine Fe(C) precipitates strengthen transformation-induced-plasticity steel. Acta Mater. 2012;60:7160–7168.
  • Deng X, Fu1 T, Wang Z, et al. Extending the boundaries of mechanical properties of Ti–Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation. Met Mater Int. 2017;23:175–183.
  • Bhadeshia HKDH. Bainite in steels. London: The Institute of Materials; 1992.
  • Edmonds DV, Cochrane RC. Structure–property relationships in bainitic steels. Metall Trans A. 1990;21:1527–1540.
  • Tither G, Kewell J. Properties of directly quenched and tempered structural steel plate. J Iron Steel Inst. 1970;208:686–694.
  • Tither G, Kewell J. Microstructure and mechanical properties of some direct-quenched and tempered low- carbon steel. J Iron Steel Inst. 1971;209:482–484.
  • Tither G, Kewell J, Frost MG. Improved properties of directly quenching. In: Effects of second-phase particles on the mechanical properties of steel. London: The Iron and Steel Institute; 1971. p. 157–165.
  • Southwick PD, editor . Proceedings of International Conference on Accelerated Cooling of Steel. Warrendale, PA: Metallurgical Society of AIME; 1986.
  • Ruddle GE and Crawley AF, editor . Proceedings of International Conference on Accelerated Cooling of Rolled Steel. 1st ed. New York: Pergamon Press; 1988.
  • Smith YE, Coldren AP, Cryderman RL. Manganese–molybdenum–niobium acicular ferrite steels with high strength and toughness. In: Towards improved ductility and toughness. Climax Molybdenum Development Company (Japan) Ltd; 1971. p. 119–142.
  • Macdonald JK. Production of plate for high-test line pipe in Australia. In’microalloying ‘75’359–373. New York: Union Carbide Corp; 1977.
  • Litvinenko DA . Development of vanadium–nitride strengthened low alloy steels for large-diameter gas pipelines. In’microalloying ‘75’470–473. New York: Union Carbide Corp; 1977.
  • Xiao F-R, Liao B, Shan Y-Y, et al. Challenge of mechanical properties of an acicular ferrite pipeline steel. Mater Sci Eng A. 2006;431:41–52.
  • Li XL, Lei CS, Deng XT, et al. Precipitation strengthening in titanium microalloyed high-strength steel plates with new generation-thermomechanical controlled processing (NG-TMCP). J Alloys Compds. 2016;689:542–555.
  • Tirumalasetty GK, van Huis MA, Fang CM, et al. Characterization of NbC and (Nb,Ti)N nanoprecipitates in TRIP assisted multiphase steels. Acta Mater. 2011;59:7406–7415.
  • Misra RDK, Nathani H, Hartmann JE, et al. Microstructural evolution in a new 770MPa hot rolled Nb–Ti microalloyed steel. Mater Sci Eng A. 2005;394:339–352.
  • Shanmugam S, Ramisetti NK, Misra RDK, et al. Microstructure and high strength–toughness combination of a new 700MPa Nb-microalloyed pipeline steel. Mater Sci Eng. 2008;478:26–37.
  • Xie ZJ, Fang YP, Han G, et al. Structure–property relationship in a 960 MPa grade ultrahigh strength low carbon niobium–vanadium microalloyed steel: The significance of high frequency induction tempering. Mater Sci Eng A. 2014;618:112–117.
  • Xie H, Du L-X, Hu J, et al. Microstructure and mechanical properties of a novel 1000MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness. Mater Sci Eng. 2014;612:123–130.
  • Charleux M, Poole WJ, Militzer M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel. Metall Mater Trans A. 2001;32:1635–1647.
  • Yi HL, Du LX, Wang GD, et al. New Ti-bearing high strengthened steel. J Mech Eng. 2008;44:50–54.
  • Yi HL, Du LX, Wang GD, et al. Development of Nb–V–Ti hot-rolled high strength steel with fine ferrite and precipitation strengthening. J Iron Steel Res Int. 2009;16:72–77.
  • Yi HL, Xu Y, Xu ZG, et al. Microstructure and properties of low cost 780 MPa hot-rolled high-strength steel. Mater Mech Eng. 2010;34:37–39.
  • Yi HL, Liu ZY, Wang GD, et al. Development of Ti-microalloyed 600 MPa hot rolled high strength steel. J Iron Steel Res Int. 2010;17:54–58.
  • Ning Z, Cai Q, Xie B, et al. The effect of deformation-induced-ferrite-transformation on nanometre-sized carbides in Ti–Mo ferritic steel. Mater Sci Technol. 2017;33:1215–1223.
  • Overview of new development for X80/X100 grade linepipe steels. nigc.ir/portal/File/ShowFile.aspx?ID=e18ab32c-d94d-4b11-a373-d106c8147f53 http://www.shunitesteel.com/wp-content/uploads/2013/05/API-5L-2007-
  • Gray JM, Siciliano F. High strength microalloyed linepipe: half a century of evolution. Microalloyed Steel Institute; 2009.
  • Petrov RH, Jonas JJ, Kestens LAI, et al. Microstructure and texture and in pipeline steels. In: Revie RW, editor. Oil and gas pipelines: integrity and safety handbook. 1st ed. Hoboken (NJ): John Wiley and Sons; 2015. p. 59–185.
  • Hillenbrand HG, Liessen A, Biermann K, et al. Development of grade 120 pipe material for high pressure gas transportation lines. 4th International Conference on Pipeline Technology;2004 May 9–12;Ostend, Belgium; Europipe, Ratingen. p. 1–10.
  • http://ir.exxonmobil.com/phoenix.zhtml?c=115024&p=irol-newsArticle_Print&ID=524989
  • Ashi H, Tsuru E, Ohita S, et al. Development of ultra-high-strength linepipe, X120. Nippon Steel Technical Report; 2004. Vol. 90. p. 82–87.
  • http://www.lngworldnews.com/exxonmobil-grants-nippon-steel-first-license-for-x120-welding-technology-usa
  • Moon J, Park C, Kim SJ. Influence of Ti addition on the hydrogen induced cracking of API 5L X70 hot-rolled pipeline steel in acid sour media. Met Mater Int. 2012;18:613–617.
  • Dong CF, Liu ZY, Li XG, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. Int J Hydrog Energy. 2009;34:9879–9884.
  • Hejazia D, Haq AJ, Yazdipour N, et al. Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking. Mater Sci Eng. 2012;551:40–49.
  • Jacob KT, Gupta S. Phase diagram of the system Ca–Ti–O at 1200 K. Bull Mater Sci. 2009;32:611–616.
  • Kimura S, Muan A. Phase relations in the system CaO–iron oxide–TiO2 in air. Amer Miner. 1971;56:1332–1346.
  • Beidokhti B, He P, Kokabi AH, et al. Control of hydrogen cracking in the welded steel using microstructural traps. Mater Sci Technol. 2017;33:408–414.
  • Ilman N, Cochrane RC, Evans GM. The development of acicular ferrite in reheated Ti–B–Al–N-type steel weld metals containing various levels of aluminium and nitrogen. Weld World. 2015;59:565–575.
  • Zhao MC, Yang K, Shan Y. The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Mater Sci Eng A. 2002;335:14–20.
  • Kong J, Zhen L, Guo B, et al. Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel. Mater Des. 2004;5:723–728.
  • Tang Z, Stumpf W. The role of molybdenum additions and prior deformation on acicular ferrite formation in microalloyed Nb–Ti low-carbon line-pipe steels. Mater Char. 2008;59:717–728.
  • Ji FQ, Li CN, Tang S, et al. Effects of carbon and niobium on microstructure and properties for Ti bearing steels. Mater Sci Technol. 2015;69:695–702.
  • Peng Z, Li L, Gao J, et al. Precipitation strengthening of titanium microalloyed high-strength steel plates with isothermal treatment. Mater Sci Eng A. 2016;657:413–421.
  • Guo B, Fan L, Wang Q, et al. Effect of finish rolling temperature on the microstructure and tensile properties of Nb–Ti microalloyed X90 pipeline steel. Metals (Basel). 2016;6:323–339.
  • Garland JG, Kirkwood PR. Towards improved submerged arc weld metal toughness. Metal Constr. 1975;7:275–283.
  • Farrar RA, Harrison PL. Acicular ferrite in carbon–manganese weld metals: an overview. J Mater Sci. 1987;22:3812–3820.
  • Koseki T, Thewlis G. Inclusion assisted microstructure control in C–Mn and low alloy steel welds. Mater Sci Technol. 2005;21:867–879.
  • Sarma DS, Karasev AV, Jönsson PG. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int. 2009;49:1063–1074.
  • Evans GM. The effect of titanium in manganese-containing SMA weld deposits. Weld J. 1993;72:123s–132s.
  • Barritte CS. [PhD thesis]. University of Cambridge; 1982.
  • Loder D, Michelic SK, Bernhard C. Acicular ferrite formation and Its influencing factors – a review. J Mater Sci Res. 2017;6:24–43.
  • Grong Ø, Matlock DK. Microstructural development in mild and low-alloy steel weld metals. Int Met Rev. 1986;31:27–48.
  • Abson DJ, Pargeter RJ. Factors influencing as-deposited strength, microstructure, and toughness of manual metal arc welds suitable for C–Mn steel fabrications. Int Met Rev. 1986;31:141–196.
  • Babu SS. The mechanism of acicular ferrite in weld deposits. Curr Opin Solid State Mater Sci. 2004;8:267–278.
  • Abson DJ, Dolby RE, Hart PHM. The role of nonmetallic inclusions in ferrite nucleation in carbon steel weld metals. Proceedings of the International Conference on Trends in Steels and Consumables;Abington: The Welding Institute; 1978. p. 75–101.
  • Cochrane RC, Kirkwood PR. The effect of oxygen on weld metal microstructure. Proceedings of the InternationalConference on Trends in Steels and Consumables, Abington;The Welding Institute; 1978. p. 661–673.
  • Ricks RA, Howell PR, Barritte CS. The nature of acicular ferrite in HSLA steel weld metals. J Mater Sci. 1982;17:732–740.
  • Barbaro FJ, Krauklis P, Easterling KE. Formation of acicular ferrite at oxide particles in steels. Mater Sci Technol. 1989;5:1057–1068.
  • Gregg JM, Bhadeshia HKDH. Solid-state nucleation of acicular ferrite on minerals added to molten steel. Acta Mater. 1997;45:739–748.
  • Blais C, L’Esperance G, Evans GM. Characterisation of inclusions found in C–Mn steel welds containing titanium. Sci Tech Weld Join. 1999;4:143–150.
  • Shim JH, Cho YW, Chung SH, et al. Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel. Acta Mater. 1999;47:2751–2760.
  • Byun S, Shim JH, Cho YW, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C–Mn steel. Acta Mater. 2003;51:1593–1606.
  • Loder D, Michelic SK, Mayerhofer A, et al. On the capability of nonmetallic inclusions to act as nuclei for acicular ferrite in different steel grades. Metall Mater Trans B. 2017;48:1992–2006.
  • Grong Ø, Kolbeinsen L, van der Eijk C, et al. Microstructure control of steels through dispersoid metallurgy using novel grain refining alloys. ISIJ Int. 2006;46:824–831.
  • Bhadeshia HKDH. Alternatives to the ferrite-pearlite microstructures. Mater Sci Forum. 1998;284–286:39–50.
  • Ohkita S, Horii Y. Recent development in controlling the microstructure and properties of low alloy steel weld metals. ISIJ Int. 1995;35:1170–1182.
  • Bailey N. Welding Institute Report, 221/1983/M (1983).
  • Hunt AC, Kluken AO, Edwards GR. Heat input and dilution effects in microalloyed steel weld metals. Weld J. 1994;73:S9–S15.
  • North TH, Bell HB, Koukabi A, et al. Notch toughness of low oxygen content submerged arc deposits. Weld J. 1979;58:343s–354s.
  • Hart PHM. The influence of vanadium-microalloying on the weldability of steels. Welding Cutting. 2003;55:204–210.
  • Dearden J, O’Neill H. A guide to the selection and welding of low alloy structural steel. Trans Inst Weld. 1940;3:203–214.
  • Zhang Z, Farrar RA. Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals. Mater Sci Technol. 1996;12:237–260.
  • Mills AR, Thewlis G, Whiteman JA. Nature of inclusions in steel weld metals and their influence on formation of acicular ferrite. Mater Sci Technol. 1987;3:1051–1061.
  • Seo K, Kim Y-M, Evans GM, et al. Formation of Mn-depleted zone in Ti-containing weld metals. Weld World. 2015;59:373–380.
  • Kim KH, Kim HJ, Evans GM, et al. Microstructure and inclusion characteristics of C–Mn steel welds at a minimal level of titanium. IIW Annual Assembly;Shanghai IIW;2017, Doc. IX-2603-17.
  • Yamamoto K, Hasegawa H, Takamura IJ. Effect of boron bearing steels on intra-granular ferrite formation in Ti-oxide. ISIJ Int. 1996;36:80–86.
  • Bonnet C, Charpentier JP. Effect of deoxidation residues in wire and of some particular oxides in CS fused fluxes on the microstructure of submerged-arc weld metals. Proceedings of conference on the Effects of Residual, Impurity, and Microalloying Elements on Weldability and Weld Properties;1983 (Paper 8). p. 1–31.
  • Lee TK, Kim HJ, Kang BY, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds. ISIJ Int. 2000;40:1260–1268.
  • Takamura J, Mizoguchi S. Metallurgy of oxides in steel1.role of oxides in steel performance. Proceedings of the Sixth International Conference on Iron and Steel Congress;Tokyo;Nagoya: ISIJ; 1990. Vol. l. p. 591–597.
  • Hui K, Yun Fu S, YaHui Z, et al. Effects of titanium oxide precipitates on the acicular ferrite nucleation in carbon structural steel. Mater Test. 2014;56:131–135.
  • Wakoh M, Sawai T, Mizoguchi S. Effect of S content on the MnS precipitation in steel with oxide nuclei. ISIJ Int. 1996;36:1014–1021.
  • Song MM, Song B, Hu CL, et al. Formation of acicular ferrite in Mg treated Ti-bearing C–Mn steel. ISIJ Int. 2015;55:1468–1473.
  • Mu W, Jönsson PG, Nakajima K. Effect of sulfur content on inclusion and microstructure characteristics in steels with Ti2O3 and TiO2 additions. ISIJ Int. 2014;54:2907–2916.
  • Xuan C, Mu W, Olano ZI, et al. Effect of the Ti, Al contents on the inclusion characteristics in steels with TiO2 and TiN particle additions. Steel Res Int. 2016;87:911–920.
  • http://www.twi-global.com/technical-knowledge/faqs/material
  • Lagneborg R, Siwecki T, Zajac S, et al. The role of vanadium in microalloyed steels. Scand J Metall. 1999;28:186–241.
  • Kanazawa S, Nakashima A, Okamota K, et al. Improvement of weld fusion zone toughness by fine TiN. Trans Iron Steel Inst Japan. 1976;16:486–495.
  • Matsuda S, Okumura N. Effect of distribution of TiN precipitate particles on the austenite grain size of low carbon low alloy steels. Trans Iron Steel Inst Japan. 1978;18:198–205.
  • Medina SF, Vega MI, Gómez M, et al. Influence of the size and volume fraction of TiN particles on Hot strength and dynamic recrystallisation in structural steels. ISIJ Int. 2005;45:1307–1315.
  • Du J, Strangwood M, Davis CL. Effect of TiN particles and grain size on the Charpy impact transition temperature in steels. J Mater Sci Technol. 2012;28:878–888.
  • Adrian H, Pickering FB. Effect of titanium additions on austenite grain growth kinetics of medium carbon V–Nb steels containing 0·008–0·018%N. Mater Sci Technol. 1991;7:176–182.
  • Hamada M, Fukada Y, Komizo Y-I. Microstructure and precipitation behaviour in heat affected zones of C–Mn microalloyed steel containing Nb, V and Ti. ISIJ Int. 1995;35:1196–1202.
  • Koukabi AH, North TH, Bell HB. Properties of submerged arc deposits–effects of zirconium, vanadium and titanium–boron. Met Constr. 1979;7:639–642.
  • Chai F, Yang CF, Su H, et al. Effect of Zr addition to Ti-killed steel on inclusion formation and microstructural evolution in welding induced coarse-grained heat affected zone. Acta Metall Sin. 2008;21:220–226.
  • Tomita Y, Saito N, Tsuzuki T, et al. Improvement in HAZ toughness by TiN–MnS addition. ISIJ Int. 1994;34:829–835.
  • Zhu ZX, Kuzmikova L, Marimuthu M, et al. Role of Ti and N in line pipe steel welds. Sci Technol Weld Join. 2013;18:1–10.
  • Zhang Y, Li X, Ma H. Enhancement of heat-affected zone toughness of a low carbon steel by TiN particle. Metall Mater Trans B. 2016;47:2148–2156.
  • Zhu ZX, Marimuthu M, Kuzmikova L, et al. Influence of Ti/N ratio on simulated CGHAZ microstructure and toughness in X70 steels. Sci Technol Weld Join. 2013;18:45–51.
  • Zhu Z, Han J, Li H. Effect of alloy design on improving toughness for X70 steel during welding. Mater Design. 2015;88:1326–1333.
  • Zhu ZX, Kuzmikova L, Li HJ, et al. The effect of chemical composition on microstructure and properties of intercritically reheated coarse-grained heat-affected zone in X70 steels. Metall Mater Trans B. 2014;45:229–235.
  • Huda N, Midawi ARH, Gianetto J, et al. Influence of martensite–austenite (MA) on impact toughness of X80 line pipe steels. Mater Sci Eng A. 2016;662:481–491.
  • Davis CL, King JE. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: part I. fractographic evidence. Metall Mater Trans. 1994;25:563–573.
  • Li Y, Crowther DN, Green MJW, et al. The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat affected zone in low carbon microalloyed steels. ISIJ Int. 2001;41:46–55.
  • Li Y, Baker TN. Effect of morphology of martensite–austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels. Mater Sci Tech. 2010;26:1029–1040.
  • Bang KS, Jeong HS. Effect of nitrogen content on simulated heat affected zone toughness of titanium containing thermomechanically controlled rolled steel. Mater Sci Technol. 2002;18:649–654.
  • Mukae S, Nishio K, Katoh M. Solution of TiN during synthetic weld thermal cycling and heat affected zone toughness in low carbon steels. Trans Jpn Weld Soc. 1987;18:148–158.
  • Okastu M, Oi K, Ihara K, et al. High strength linepipe with excellent HAZ toughness. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering;June 2004. Vancouver: ASME. p. 1–6.
  • Shen Y, Hansen S. Effect of the Ti/N ratio on the hardenability and mechanical properties of a quenched-and-tempered C–Mn–B steel. Metall Mater Trans A. 1997;28:2027–2035.
  • Williams JG. Advances in steels for high strength ERW linepipe application in Australia. Mater Forum. 2007;31:1–10.
  • Li Y, Wilson J, Crowther DN, et al. The effects of vanadium, niobium, titanium and zirconium on the microstructure and mechanical properties of thin slab cast steels. ISIJ Int. 2004;44:1093–1102.
  • Mu W, Jonsson PG, Nakajima K. Recent aspects on the effect of inclusion characteristics on the intragranular ferrite formation in low alloy steels: a review. High Temp Mater Proc. 2017;36:309–325.
  • Funakoshi T, Tanaka T, Ueda T, et al. Improvement in microstructure and toughness of large heat-input weld bond due to addition of rare earth metals and boron in high strength steel. Tetsu-to-Hagané. 1977;63:303–312.
  • Sawai T, Wakoh M, Ueshima Y, et al. Analysis of oxide dispersion during solidification in Ti,Zr-deoxidized steels. ISIJ Int. 1992;32:169–173.
  • Nako H, Okazaki Y, Speer JG. Acicular ferrite formation on Ti-rare earth metal–Zr complex oxides. ISIJ Int. 2015;55:250–256.
  • Mintz B, Yue S, Jonas JJ. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. Int Mater Rev. 1991;36:187–220.
  • Mintz B, Crowther DN. The influence of small additions of Ti on the hot ductility of steels. In: Baker TN, editor. Titanium technology in microalloyed steels. London: Institute of Materials; 1997. p. 98–114.
  • Ånmark N, Karasev A, Jönsson PG. The effect of different non-metallic inclusions on the machinability of steels. Materials (Basel). 2015;8:751–783.
  • Banks TM, Gladman T. Sulphide shape control. Met Technol. 1979;6:81–94.
  • Baker TJ, Charles JA. Deformation of MnS inclusions in steel. J Iron Steel Inst. 1972;210:680–690.
  • Baker TJ, Charles JA. Morphology of manganese sulfide in steel. J Iron Steel Inst. 1972;210:702–706.
  • Lichy EJ, Duderstadt GC, Samways NL. Control of sulfide shape in low carbon Al-killed steel. J Met. 1965;17:769–775.
  • Sims CE. The nonmetallic constituents of steel. Trans AIMME. 1959;215:367–393.
  • Maunder PJH, Charles JA. Behaviour of non-metallic inclusions in a 0.2 percent carbon steel ingot during hot rolling. J Iron Steel Inst. 1968;206:705–715.
  • Segal A, Charles JA. Influence of particle size on deformation characteristics of manganese sulphide inclusions in steel. Mater Technol. 1977;4:177–182.
  • Gray JM . Linepipe and structural steel produced by high speed continuous casting. US Patent No5993570; 1999.
  • Dehghan-Manshadi A, Dippenaar RJ. The behavior of precipitates during hot-deformation of low-manganese, titanium-added pipeline steels. Metall Mater Trans A. 2010;41:3291–3296.
  • Barbara FJ, Jones CA, Edwards PD, et al. Sulphide inclusions in low manganese steels. www.betametallurgy.co.uk/public/images/publications/lowmn/Barbaro
  • Llewellyn DT, Hudd RC. Steels–metallurgy & applications. 3rd ed.London: Butterworth-Heinemann; 1998.
  • Oikawa K, Ishida K, Nishizawa T. Effect of titanium addition on the formation and distribution of MnS inclusions in steel during solidification. ISIJ Int. 1997;37:332–338.
  • Aminorroaya S, Dippenaar R. TEM analysis of centreline sulphide precipitates modified by titanium additions to low carbon steel. J Microsc. 2008;232:123–129.
  • Kejian H, Baker TN. Copper containing sulphide phases present in controlled rolled niobium–titanium bearing high strength low alloy steels. Mater Sci Technol. 1992;8:1082–1089.
  • Moore EM. Factors influencing hydrogen cracking sensitivity of pipeline steels. Mater Perform. 1976;15:17–23.
  • Ishiguro Y, Murayama T, Fujita T, et al. Sulfide precipitation in titanium-added steel with residual level of copper (1)-precipitation in austenite region. Mater Trans. 2009;50:13601369.
  • Escobar DP, Duprez L, Atrens A, et al. Thermal desorption spectroscopy study of experimental Ti/S containing steels. Mater Sci Tchnol. 2013;29:261–267.
  • Robbins RL, Shepard OC, Sherby OD. Role of crystal structure on the ductility of pure iron at elevated temperature. J Iron Steel Inst. 1961;199:175–180.
  • Rossard C, Blain P. A method of simulation by torsion to determine the influence of hot rolling conditions on the structure of steel. Rev Métall. 1962;59:223–236.
  • Mintz B, Arrowsmith JM. Hot ductility behaviour of C–Mn–Al steel and its relationship to crack propagation during straightening of continuously cast strand. Met Technol. 1979;6:24–32.
  • Suzuki HG, Nishimura S, Yamaguchi S. Characteristics of Hot ductility in steels subjected to the melting and solidification. Trans Iron Steel Inst Jpn. 1982;22:48–56.
  • Wilcox JR, Honeycombe RWK. Influence of prior precipitation on hot ductility of C–Mn–Nb–Al steels. In: Sellars CM, Davies GJ, editors. Hot working and forming processes. London: Institute of Materials; 1990. p. 108–112.
  • Luo H, Karjalainen LP, Porter DA, et al. The influence of Ti on the hot ductility of Nb bearing steels in simulated continuous casting processes. ISIJ Int. 2002;42:273–282.
  • Banks KM, Tuling A, Klinkenberg C, et al. Influence of Ti on hot ductility of Nb containing HSLA steels. Mater Sci Technol. 2011;27:737–745.
  • Crowther DN, Mintz B. Influence of grain size on hot ductility of plain C–Mn steels. Mater Sci Technol. 1986;2:951–955.
  • Mintz B. The influence of composition on the hot ductility of steels and the problem of transverse cracking. ISIJ Int. 1999;39:833–855.
  • Abushosha R, Vipnd R, Mintz B. Influence of titanium on hot ductility of as cast steels. Mater Sci Technol. 1991;7:613–621.
  • Cardoso GISL, Mintz B, Yue S. Hot ductility of aluminium and titanium containing steels with and without cyclic temperature oscillations. Ironmaking Steelmaking. 1995;22:365–377.
  • Abushosha R, Comineli O, Mintz B. Influence of Ti on hot ductility of C–Mn–Al steels. Mater Sci Technol. 1999;15:278–286.
  • Mintz B, Crowther DN. Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting. Int Mater Rev. 2010;55:168–196.
  • Banks K, Tuling A, Mintz B. Influence of V and Ti on hot ductility of Nb containing steels of peritectic C contents. Mater Sci Technol. 2011;27:1309–1314.
  • Spradbery C, Mintz B. Influence of undercooling thermal cycle on hot ductility of C–Mn–Al–Ti and C–Mn–Al–Nb–Ti steels. Ironmaking Steelmaking. 2005;32:319–324.
  • El-Wazri AM, Hassani F, Yue S, et al. The effect of thermal history on the hot ductility of microalloyed steels. ISIJ Int. 1999;39:256–262.
  • McPherson NA, McLean A. Continuous Casting Volume Six-Tundish to Mold Transfer Operations, ed. 6 eds, ISS Warrendale, PA; 1992. p. 1–29.
  • Zhang L, Thomas BG. Inclusions in continuous cast steel. XXIV National Steelmaking Symposium;Morelia, Mich., Mexico;2003 November 26–28; p. 138–183.
  • DeMasi GA, Hartman RF. In: 64th Steelmaking Conference Proc. 64 eds., ISS, Warrendale, PA; 1981. p. 245–253.
  • Cameron SR. 75 Steelmaking Conference Proceedings ISS, Warrendale, PA; 1992. p. 327–332.
  • Private communication 2017 J. Madill, Tata Steel Europe.
  • Kromhout JA. Mould powder development for continuous casting of steel. Trans Indian Inst Met. 2013;66:587–596.
  • Mills KC, Fox AB, Li Z, et al. Performance and properties of mould fluxes. Ironmaking Steelmaking. 2005;32:26–34.
  • Wang Q, Lu Y, He S, et al. Formation of TiN and Ti(C, N) in TiO2 containing, fluoride free, mould fluxes at high temperature. Ironmaking Steelmaking. 2011;38:297–301.
  • Mills KC, Däcker CÅ. Different types of mould powders. The casting powders book. Cham: Springer; 2017. p. 177–222.
  • McPherson NA, McIntosh SL. Mold powder related defects in some continuously cast steel products. Iron Steel Maker. 1987;June:19–25.
  • Glodowski RJ. Experience in producing vanadium microalloyed steels thin-slab-casting steel technology. In International Symposium on Thin-slab Casting and Rolling;December 3–5;Guangzhou: Chinese Society for Metals;2000. p. 329–339.
  • Bhattacharya D, Misra S. Development of microalloyed steels through thin slab casting and rolling (TSCR) route. Trans Ind Inst Met. 2017;70:1647–1659.
  • Sha QY, Sun ZQ. Microstructure and precipitation in as cast low carbon Nb–V–Ti microalloyed medium thin slab. Ironmaking Steelmaking. 2010;37:320–325.
  • Park JS, Ajmal M, Priestner R. Tensile properties of simulated thin slab cast and direct rolled low-carbon steel microalloyed with Nb, V and Ti. ISIJ Int. 2000;40:380–385.
  • Rodriguez-Ibabe JM. Thin slab direct rolling of microalloyed steels. Mater Sci Forum. 2005;500–501:49–62.
  • Bruns H, Kaspar R. Direct charging of thin slabs of a cold formable HSLA steel. Steel Res. 1997;68:215–219.
  • Priestner R, Zhou C. Simulation of microstructural evolution in Nb–Ti microalloyed steel during hot direct rolling. Ironmaking Steelmaking. 1995;22:326–332.
  • Li Y, Wilson JA, Craven AJ, et al. Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging. Part 1: processing parameters, mechanical properties and microstructure. Mater Sci Technol. 2007;23:509–518.
  • Wilson JA, Craven AJ, Li Y, et al. Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging. Part 2: chemical characterisation of dispersion strengthening precipitates. Mater Sci Technol. 2007;23:519–527.
  • Show BK, Veerababu R, Balamuralikrishnan R, et al. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel. Mater Sci Eng A. 2010;527:1595–1604.
  • Herman J-C, Messien P, Gréday T, et al. HSLATi-containng steels. In: Deardo AJ, editor. Thermomechanical processing of microalloyed austenite. Warrendale, PA: Metallurgical Society-AIME; 1982. p. 655–671.
  • Sage AM, Cochrane RC, Howse DS. Proceedings of the International Conference on Processing Microstructure and Properties of Microalloyed and Other Modern HSLA Steels. Pittsburgh, PA, USA; 1992. p. 443–460.
  • Arribas M, López B, Rodriguez-Ibabe JM. Additional grain refinement in recrystallization controlled rolling of Ti-microalloyed steels processed by near-net-shape casting technology. Mater Sci Eng A. 2008;485:383–394.
  • Nagata MT, Speer JG, Matlock DK. Titanium nitride precipitation in thin-slab cas high-strength low-alloy steel. Metall Mater Trans A. 2002;33:3099–3110.
  • Lopez B, Rodriguez-Ibabe JM. Some metallurgical issues concerning austenite conditioning in Nb–Ti and Nb–Mo microalloyed steels processed by near-net-shape casting and direct rolling technologies. Metall Mater Trans A. 2017;48:2801–2811.
  • Liu WJ, Jonas JJ. A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures. Metall Trans A. 1988;19:1403–1413.
  • Liu WJ, Jonas JJ. Ti(CN) precipitation in microalloyed austenite during stress relaxation. Metall Trans A. 1988;19:1415–1424.
  • Fernández AI, López B, Rodrıguez-Ibabe JM. Relationship between the austenite recrystallized fraction and the softening measured from the interrupted torsion test technique. Scr Mater. 1999;40:543–549.
  • Leduc LA, Sellars CM, et al. Hot rolling of C–Mn–Ti steels. In: Deardo AJ, editor. Thermomechanical processing of microalloyed austenite. Warrendale, PA: Metallurgical Society-AIME; 1982. p. 641–652.
  • Wang Z, Mao X, Yang Z, et al. Strain-induced precipitation in a Ti micro-alloyed HSLA steel. Mater Sci Eng A. 2011;525:459–467.
  • Abken MG, Chandra T, Plassiard P, et al. Dynamic precipitation and solute hardening in a titanium microalloyed steel containing 3 levels of manganese. Acta Metall. 1984;32:591–601.
  • Dong F, Xue F, Du L, et al. Promoting Ti4C2S2 strain induced precipitation during asymmetrical hot rolling to improve r value and advantaged texture in Ti stabilized IF steel. J Alloys Compds. 2015;620:240–248.
  • Wang Z, Sun X, Yang Z, et al. Carbide precipitation in austenite of a Ti–Mo-containing low-carbon steel during stress relaxation. Mater Sci Eng A. 2013;573:84–91.
  • Roberts W, Sandberg A, Siwecki T, et al. Prediction of microstructure development during hot rolling of Ti-V steels. HSLA Steels Technology and Applications Conference;ASM, OH;1984. p. 67–84.
  • Uranga P, Fernández AI, López B, et al. Study of the interaction between precipitation and recrystallization in Ti-microalloyed steels after reheating at very high temperature. Proceedings of Conference on Thermomechanical Processing of Steels. London: The Institute of Materials; 2000. p. 204–213.
  • Wadsworth J, Woodhead JH, Keown SR. The influence of stoichiometry upon carbide precipitation. Met Sci. 1976;10:342–348.
  • Mao XG, Chen QG, Sun XG. Metallurgical interpretation on grain refinement and synergistic effect of Mn and Ti inTi-microalloyed strip produced by TSCR. J Iron Steel Res Int. 2014;21:30–40.
  • Wang C, Yong Q, Sun X, et al. Effects of Ti and Mn contents on the precipitate characteristics and strengthening mechanism in Ti microalloyed steels produced by CSP. Acta Metall Sin. 2011;47:1541–1549.
  • Sha QY, Sun ZQ, Li LF. Refinement of coarse grained austenite in Nb–V–Ti microalloyed steel during roughing rolling. Ironmaking Steelmaking. 2015;42:74–80.
  • Sha QY, Sun ZQ. Grain growth behavior of coarse-grained austenite in a Nb–V–Ti microalloyed steel. Mater Sci Eng. 2009;523:77–84.
  • Sha QY, Sun ZQ. Prediction of grain growth of coarse-grained austenite in Nb–V–Ti microalloyed steel. Mater Sci Technol. 2011;27:1408–1411.
  • Uranga P, Fernández AI, López B, et al. Modeling of austenite grain size distribution in Nb microalloyed steels processed by thin slab casting and direct rolling (TSDR) route. ISIJ Int. 2004;44:1416–1425.
  • Reip CP, Shanmugam S, Misra RDK. High strength microalloyed CMn(V–Nb–Ti) and CMn(V–Nb) pipeline steels processed through CSP thin-slab technology: microstructure, precipitation and mechanical properties. Mater Sci Eng. 2006;424:307–317.
  • Fernández AI, Uranga P, López B, et al. Static recrystallization behaviour of a wide range of austenite grain sizes in microalloyed steels. ISIJ Int. 2000;40:893–901.
  • Lee C, Bhadeshia H, Lee H. Effect of plastic deformation on the formation of acicular ferrite. Mater Sci Eng A. 2003;360:249–257.
  • Manohar PA, Dunne DP, Chandra T, et al. Grain growth predictions in microalloyed steels. ISIJ International. 1996;36:194–200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.