Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 5
553
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

A novel dual plugs gas blowing mode for efficient ladle metallurgy

, , , &
Pages 405-415 | Received 12 Dec 2018, Accepted 25 Jan 2019, Published online: 10 Feb 2019

References

  • Tang HY, Li JS, Xie CH, et al. Rational argon stirring for a 150-t ladle furnace. Int J Miner Metall Mater. 2009;16(4):383–386. doi: 10.1016/S1674-4799(09)60068-6
  • Mandal J, Patil S, Madan M, et al. Mixing time and correlation for ladles stirred with dual porous plugs. Metall Mater Trans B. 2005;36(4):479–487. doi: 10.1007/s11663-005-0039-7
  • Huang HG, Meng Y, Sun JN, et al. Heat transfer of calcium cored wires and CFD simulation on flow and mixing efficiency in the argon-stirred ladle. Ironmak Steelmak. 2018;45(7):626–634. doi: 10.1080/03019233.2017.1309751
  • Krishnapisharody K, Irons GA. Modeling of slag eye formation over a metal bath due to gas bubbling. Metall Mater Trans B. 2006;37(5):763–772. doi: 10.1007/s11663-006-0058-z
  • Ramasetti EK, Visuri VV, Sulasalmi P, et al. Modeling of the effect of the gas flow rate on the fluid flow and open-eye formation in a water model of a steelmaking ladle. Steel Res Int. 2018. doi: 10.1002/srin.201800365
  • Singh U, Anapagaddi R, Mangal S, et al. Multiphase modeling of bottom-stirred ladle for prediction of slag–steel interface and estimation of desulfurization behavior. Metall Mater Trans B. 2016;47(3):1804–1816. doi: 10.1007/s11663-016-0620-2
  • Liu W, Tang HY, Yang SF, et al. Numerical simulation of slag eye formation and slag entrapment in a bottom-blown argon-stirred ladle. Metall Mater Trans B. 2018;49(5):2681–2691. doi: 10.1007/s11663-018-1308-6
  • Duan HJ, Zhang LF, Thomas BG, et al. Fluid flow, dissolution, and mixing phenomena in argon-stirred steel ladles. Metall Mater Trans B. 2018;49(5):2722–2743. doi: 10.1007/s11663-018-1350-4
  • Geng DQ, Lei H, He JC. Optimization of mixing time in a ladle with dual plugs. Int J Miner Metall Mater. 2010;17(6):709–714. doi: 10.1007/s12613-010-0378-5
  • Méndez CG, Nigro N, Cardona A. Drag and non-drag force influences in numerical simulations of metallurgical ladles. J Mater Process Technol. 2005;160(3):296–305. doi: 10.1016/j.jmatprotec.2004.06.018
  • Liu HP, Qi ZY, Xu MG. Numerical simulation of fluid flow and interfacial behavior in three-phase argon-stirred ladles with one plug and dual plugs. Steel Res Int. 2011;82(4):440–458. doi: 10.1002/srin.201000164
  • Chen YS, Pang YJ, Zhang XG. Numerical study on effects of molten steel flow about different blowing argon position in ladle furnace. Adv Mater Res. 2011;146–147:1031–1037. doi: 10.4028/www.scientific.net/AMR.146-147.1031
  • Nakanishi K, Szekely J, Fujii T, et al. Stirring and its effect on aluminum deoxidation of steel in the ASEA-SKF furnace: part I. Plant scale measurements and preliminary analysis. Metall Mater Trans B. 1975;6(1):111–118. doi: 10.1007/BF02825685
  • Mori K, Sano M, Sato T. Size of bubbles formed at single nozzle immersed in molten iron. Trans Iron Steel Inst Jpn. 1979;19(9):553.
  • Sahai Y, Guthrie RIL. Effective viscosity models for gas stirred ladles. Metall Trans B. 1982;13(1):125–127. doi: 10.1007/BF02666963
  • Sahai Y, Guthrie RIL. Hydrodynamics of gas stirred melts: part I. Gas/liquid coupling. Metall Trans B. 1982;13(2):193–202. doi: 10.1007/BF02664576
  • Nakanishi K, Fujii T, Szekely J. Possible relationship between energy dissipation and agitation in steel processing operations. Ironmak Steelmak. 1975;2(3):193–197.
  • Sano M, Mori K. Fluid flow and mixing characteristics in a gas-stirred molten metal bath. Trans Iron Steel Inst Jpn. 1983;23(2):169–175. doi: 10.2355/isijinternational1966.23.169
  • Asai S, Okamoto T, He JC, et al. Mixing time of refining vessels stirred by gas injection. Trans Iron Steel Inst Jpn. 1983;23(1):43–50. doi: 10.2355/isijinternational1966.23.43
  • Mazumdar D, Guthrie RIL. Mixing models for gas stirred metallurgical reactors. Metall Trans B. 1986;17(4):725–733. doi: 10.1007/BF02657134
  • Turkoglu H, Farouk B. Mixing time and liquid circulation rate in steelmaking ladles with vertical gas injection. ISIJ Int. 1991;31(12):1371–1380. doi: 10.2355/isijinternational.31.1371
  • Zhu MY, Inomoto T, Sawada I, et al. Fluid flow and mixing phenomena in the ladle stirred by argon through multi-tuyere. ISIJ Int. 1995;35(5):472–479. doi: 10.2355/isijinternational.35.472
  • Murthy GGK, Mehrotra SP, Ghosh A. Experimental investigation of mixing phenomena in a gas stirred liquid bath. Metall Trans B. 1988;19(6):839–850. doi: 10.1007/BF02651408
  • Murthy GGK, Elliott JF. Definition and determination of mixing time in gas agitated liquid baths. ISIJ Int. 1992;32(2):190–195. doi: 10.2355/isijinternational.32.190
  • Amaro-Villeda AM, Ramirez-Argaez MA, Conejo AN. Effect of slag properties on mixing phenomena in gas-stirred ladles by physical modeling. ISIJ Int. 2014;54(1):1–8. doi: 10.2355/isijinternational.54.1
  • Mazumdar D, Nakajima H, Guthrie RIL. Possible roles of upper slag phases on the fluid dynamics of gas stirred ladles. Metall Trans B. 1988;19(3):507–511. doi: 10.1007/BF02657751
  • Kishimoto Y, Sheng YY, Irons GA, et al. Energy dissipation distribution in gas-stirred liquids. ISIJ Int. 1999;39(2):113–122. doi: 10.2355/isijinternational.39.113
  • Mazumdar D, Guthrie RIL. Modeling energy dissipation in slag-covered steel baths in steelmaking ladles. Metall Mater Trans B. 2010;41(5):976–989. doi: 10.1007/s11663-010-9389-x
  • Iguchi M, Nakamura KI, Tsujino R. Mixing time and fluid flow phenomena in liquids of varying kinematic viscosities agitated by bottom gas injection. Metall Mater Trans B. 1998;29(3):569–575. doi: 10.1007/s11663-998-0091-1
  • Han JW, Heo SH, Kam DH, et al. Transient fluid flow phenomena in a gas stirred liquid bath with top oil layer-approach by numerical simulation and water model experiments. ISIJ Int. 2001;41(10):1165–1172. doi: 10.2355/isijinternational.41.1165
  • Tang HY, Guo XC, Wu GH, et al. Effect of gas blown modes on mixing phenomena in a bottom stirring ladle with dual plugs. ISIJ Int. 2016;56(12):2161–2170. doi: 10.2355/isijinternational.ISIJINT-2016-360
  • Terrazas MSC, Conejo AN. Effect of nozzle diameter on mixing time during bottom-gas injection in metallurgical ladles. Metall Mater Trans B. 2015;46(2):711–718. doi: 10.1007/s11663-014-0263-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.