Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 47, 2020 - Issue 7
4,093
Views
16
CrossRef citations to date
0
Altmetric
Review

Review and data evaluation for high-temperature reduction of iron oxide particles in suspension

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 741-747 | Received 02 Jan 2019, Accepted 27 Feb 2019, Published online: 21 Mar 2019

References

  • Meijer K, Denys M, Lasar J, et al. ULCOS: ultra-low CO2 steelmaking. Ironmak Steelmak. 2009;36(4):249–251. doi: 10.1179/174328109X439298
  • Sohn H, Moo EC, Zhang Y, et al.2009). Suspension reduction technology for ironmaking with low CO2 emission and energy requirement. Iron and Steel Technology Conference, AISTech 2009.
  • Choi M, Sohn H. Development of green suspension ironmaking technology based on hydrogen reduction of iron oxide concentrate: rate measurements. Ironmak Steelmak. 2013;37(2):81–88. doi: 10.1179/030192309X12506804200663
  • Sohn HY, Mohassab Y. Development of a novel flash ironmaking technology with greatly reduced energy consumption and CO2 emissions. J Sustain Metal. 2016;2(3):216–227. doi:10.1007/s40831-016-0054-8.
  • Park W-I, Jung S-M. Effective use of CH4 gas as a reducing agent in suspension reduction process. ISIJ Int. 2015;55(1):166–174. doi:10.2355/isijinternational.55.166.
  • Xu J, Wang N, Chen M, et al. Reduction behavior of blast furnace dust particles during in-flight processes. Ind Eng Chem Res. 2018;57(1):111–121. doi:10.1021/acs.iecr.7b03849.
  • Xu J, Xin J, Wang N, et al. editors. Kinetic analysis of blast furnace dust recycling with flash reduction process at high temperature. Cham: Springer International; 2018 (9th International Symposium on high-temperature metallurgical processing).
  • Sundman B. An assessment of the Fe-O system. J Phase Equilib. 1991;12(2):127–140.
  • Fabrichnaya O, Sundman B. The assessment of thermodynamic parameters in the Fe-O and Fe-Si-O systems. Geochim Cosmochim Acta. 1997;61(21):4539–4555.
  • Qu Y, Yang Y, Zou Z, et al. Melting and reduction behaviour of individual fine hematite ore particles. ISIJ Int. 2015;55(1):149–157. doi:10.2355/isijinternational.55.149.
  • Qu Y, Yang Y, Zou Z, et al. Thermal decomposition behaviour of fine iron ore particles. ISIJ Int. 2014;54(10):2196–2205.
  • Qu Y, Yang Y, Zou Z, et al. Reduction kinetics of fine hematite Ore particles with a high temperature drop tube furnace. ISIJ Int. 2015;55(5):952–960. doi:10.2355/isijinternational.55.952.
  • Hayes P, Grieveson P. Microstructural changes on the reduction of hematite to maanetite. Metall Trans B. 1981;12(3):579–587.
  • Swann P, Tighe N. High voltage microscopy of the reduction of hematite to magnetite. Metall Trans B. 1977;8(2):479–487.
  • Kashiwaya Y, Yamaguchi Y, Kinoshita H, et al. In situ observation of reduction behavior of hematite with solid carbon and crystallographic orientation between hematite and magnetite. ISIJ Int. 2007;47(2):226–233.
  • Gudenau HW, Senk D, Wang S, et al. Research in the reduction of iron ore agglomerates including coal and C-containing dust. ISIJ Int. 2005;45(4):603–608. doi:10.2355/isijinternational.45.603.
  • Baguley P, John DHS, Hayes P. The conditions for the formation of lath and porous magnetite on reduction of hematite in H2/H2O gas mixtures. Metall Mater Trans B. 1983;14(3):513–514.
  • Komatina M, Gudenau HW. The sticking problem during direct reduction of fine iron ore in the fluidized bed. Metalurgija. 2004;10(4):309–328.
  • El-Geassy AA, Nasr MI, Mousa EA. Influence of manganese oxide and silica on the morphological structure of hematite compacts. Steel Res Int. 2010;81(3):178–185. doi:10.1002/srin.200900121.
  • Wong P, Kim M, Kim H, et al. Sticking behaviour in direct reduction of iron ore. Ironmak Steelmak. 2013;26(1):53–57.
  • Seaton CE, Foster JS, Velasco J. Structural changes occurring during reduction of hematite and magnetite pellets containing coal char. Trans Iron Steel Inst Japan. 1983;23(6):497–503. doi:10.2355/isijinternational1966.23.497.
  • Muan A. Phase equilibria at high temperatures in oxide systems involving changes in oxidation states. Am J Sci. 1958;256(3):171–207.
  • Sohn HY, Chaubal PC. The ignition and combustion of chalcopyrite concentrate particles under suspension-smelting conditions. Metall Trans B. 1993;24(6):975–985. doi:10.1007/BF02660989.
  • Nakamoto M, Ono-Nakazato H, Kawabata H, et al. Reduction behavior of wustite compact with pore blockade by liquid slag. Tetsu-to-Hagane. 2004;90(1):1–8.
  • Maeda T, Ono Y. Reduction equilibria of ternary calcium ferrite with CO-CO2 gas mixture. Tetsu-to-Hagane. 1994;80(6):451–456.
  • Ono Y, Murayama T, Maeda T. Reduction equilibria of multi-component calcium ferrite with CO-CO2 gas mixture. Trans Iron Steel Soci AIME. 1991;12:115–123.
  • Bradshaw AV, Matyas AG. Structural changes and kinetics in the gaseous reduction of hematite. Metall Trans B. 1976;7(1):81–87. doi:10.1007/BF02652822.
  • Valipour M. Mathematical modeling of a non-catalytic gas-solid reaction: hematite pellet reduction with syngas. Scientia Iranica. 2009;16:108–124.
  • Wen C. Noncatalytic heterogeneous solid-fluid reaction models. Ind Eng Chem. 1968;60(9):34–54.
  • Turkdogan E, Vinters J. Gaseous reduction of iron oxides: part I. Reduction of hematite in hydrogen. Metall Mater Trans B. 1971;2(11):3175–3188.
  • Tsukihashi F, Kato K, Otsuka K-I, et al. Reduction of molten iron oxide in CO gas conveyed system. Tetsu-to-Hagane. 1982;68(7):750–758.
  • Tsukihashi F, Kato K, Otsuka K-I, et al. Reduction of molten iron oxide in CO gas conveyed system. Trans Iron Steel Inst Japan. 1982;22(9):688–695. doi:10.2355/isijinternational1966.22.688.
  • Hayashi S, Iguchi Y. Influence of gangue species on hydrogen reduction rate of liquid wustite in gas-conveyed systems. ISIJ Int. 1995;35(3):242–249.
  • Takeuchi N, Nomura Y, Ohno K-I, et al. Kinetic analysis of spherical wustite reduction transported with CH4 gas. Tetsu-to-Hagane. 2009;94(4):115–120.
  • Warner NA. Towards zero CO2 continuous steelmaking directly from ore. Metall Mater Trans B. 2014 2014;45(6):2080–2096. doi:10.1007/s11663-014-0136-6.
  • Takeuchi N, Nomura Y, Ohno K-I, et al. Kinetic analysis of spherical wuestite reduction transported with CH4 gas. ISIJ Int. 2007;47(3):386–391.
  • Nomura Y, Nakagawa H, Maeda T, et al. Rapid reduction of fine iron ore transported with CH4 gas. Tetsu-to-Hagane. 2005;91(6):521–527.
  • Hayashi S, Iguchi Y. Hydrogen reduction of liquid iron oxide fines in gas-conveyed systems. ISIJ Int. 1994;34(7):555–561. doi:10.2355/isijinternational.34.555.
  • Fan D, Mohassab Y, Elzohiery M, et al. Analysis of the hydrogen reduction rate of magnetite concentrate particles in a drop tube reactor through CFD modeling. Metall Mater Trans B. 2016;47(3):1669–1680. doi:10.1007/s11663-016-0603-3.
  • Fan D-Q, Sohn HY, Elzohiery M. Analysis of the reduction rate of hematite concentrate particles in the solid state by H2 or CO in a drop-tube reactor through CFD modeling. Metall Mater Trans B. 2017;48(5):2677–2684. doi:10.1007/s11663-017-1053-2.
  • Abolpour B, Afsahi MM, Soltani Goharrizi A, et al. Simulating reduction of in-flight particles of magnetite concentrate by carbon monoxide. Ironmak Steelmak. 2017;44(10):750–761. doi:10.1080/03019233.2016.1232879.
  • Abolpour B, Afsahi MM, Soltani Goharrizi A, et al. Investigation of in-flight reduction of magnetite concentrate by hydrogen. Ironmak Steelmak. 2017;44:1–11.
  • Guo L, Gao J, Zhong Y, et al. Flash suspension reduction of ultra-fine Fe2O3 powders and the kinetic analyzing. ISIJ Int. 2015;55(9):1797–1805.
  • Salmani M, Alamdari EK, Firoozi S. Isoconversional analysis of thermal dissociation kinetics of hematite in air and inert atmospheres. J Therm Anal Calorim. 2017;128(3):1385–1390.
  • Qu Y. (2013). Experimental study of the melting and reduction behaviour of ore used in the HIsarna process (PhD thesis). Delft University of Technology.
  • Choi ME. Suspension hydrogen reduction of iron ore concentrate. Salt Lake City: The University of Utah; 2010.
  • Ramachandran P, Doraiswamy L. Modeling of noncatalytic gas-solid reactions. AlChE J. 1982;28(6):881–900.
  • Wang H. Reduction kinetics of iron ore concentrate particles relevant to a novel green ironmaking process. Salt Lake City: The University of Utah; 2011.
  • Wang H, Sohn H. Hydrogen reduction kinetics of magnetite concentrate particles relevant to a novel flash ironmaking process. Metall Mater Trans B. 2013;44(1):133–145.
  • Elzohiery M, Sohn HY, Mohassab Y. Kinetics of hydrogen reduction of magnetite concentrate particles in solid state relevant to flash ironmaking. Steel Res Int. 2017;88(2):1600133–n/a. doi:10.1002/srin.201600133.
  • Chen F, Mohassab Y, Zhang S, et al. Kinetics of the reduction of hematite concentrate particles by carbon monoxide relevant to a novel flash ironmaking process. Metall Mater Trans B. 2015;46(4):1716–1728. doi:10.1007/s11663-015-0345-7.
  • Chen F, Mohassab Y, Jiang T, et al. Hydrogen reduction kinetics of hematite concentrate particles relevant to a novel flash ironmaking process. Metall Mater Trans B. 2015;46(3):1133–1145. doi:10.1007/s11663-015-0332-z.
  • Mohassab Y, Chen F, Elzohiery M, et al. Reduction kinetics of hematite concentrate particles by CO + H2 mixture relevant to a novel flash ironmaking process. In: Hwang J-Y, Jiang T, Pistorius PC, et al. editor. 7th International Symposium on high-temperature metallurgical processing. Cham: Springer International; 2016. p. 221–228.
  • Abolpour B, Afsahi MM, Azizkarimi M. Reduction kinetics of magnetite concentrate particles by carbon monoxide. Min Proc Extractive Metall. 2018;127(1):29–39.
  • Wang H, Sohn HY. Reduction of magnetite concentrate particles by H2+CO at 1673K. ISIJ Int. 2015;55(3):706–708.
  • Nagasaka T, Hino M, Ban-Ya S. Interfacial kinetics of hydrogen with liquid slag containing iron oxide. Metall Mater Trans B. 2000;31(5):945–955.
  • Nasr MI, Omar AA, Khedr MH, et al. Effect of nickel oxide doping on the kinetics and mechanism of iron oxide reduction. ISIJ Int. 1995;35(9):1043–1049. doi:10.2355/isijinternational.35.1043.
  • El-Geassy AA. Gaseous reduction of MgO-doped Fe2O3 compacts with carbonmonoxide at 1173-1473K. ISIJ Int. 1996;36(11):1328–1337. doi:10.2355/isijinternational.36.1328.
  • El-Geassy A. Influence of doping with CaO and/or MgO on stepwise reduction of pure hematite compacts. Ironmak Steelmak. 1999;26(1):41–52.
  • El-Geassy A-HA, Nasr MI, Omar AA, et al. Reduction kinetics and catastrophic swelling of MnO2-doped Fe2O3 compacts with CO at 1073-1373K. ISIJ Int. 2007;47(3):377–385. doi:10.2355/isijinternational.47.377.
  • El-Geassy A-HA, Nasr MI, Omar AA, et al. Influence of SiO2 and/or MnO2 on the reduction behaviour and structure changes of Fe2O3 compacts with CO gas. ISIJ Int. 2008;48(10):1359–1367. doi:10.2355/isijinternational.48.1359.
  • Basumallick A. Influence of CaO and Na2CO3 as additive on the reduction of hematite-lignite mixed pellets. ISIJ Int. 1995;35(9):1050–1053. doi:10.2355/isijinternational.35.1050.
  • Prasannan PC, Ramachandran PA, Doraiswamy LK. A model for gas-solid reactions with structural changes in the presence of inert solids. Chem Eng Sci. 1985;40(7):1251–1261. doi:10.1016/0009-2509(85)85084-3.