Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 47, 2020 - Issue 9
388
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Effect of aging treatment on microstructure and properties of additively manufactured maraging steel

, , & ORCID Icon
Pages 980-985 | Received 24 Jul 2019, Accepted 29 Jul 2019, Published online: 12 Aug 2019

References

  • He BB, Hu B, Yen HW, et al. High dislocation density-induced large ductility in deformed and partitioned steel. Science. 2017;357:1029–1032. doi: 10.1126/science.aan0177
  • Jiang S, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature. 2017;544:460–464. doi: 10.1038/nature22032
  • Koyama M, Zhang Z, Wang M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steel. Science. 2017;355:1055–1057. doi: 10.1126/science.aal2766
  • Yin H, Lin J-X, Su Y-J, et al. The touchening designing of maraging steel. Mater Rev A. 2014;28(7):86–88.
  • Murty SVSN, Manwatkar SK, Narayanan PR. Metallurgical analysis of a failed maraging steel shear screw used in the band separation system of a satellite launch vehicle. Defence Technol. 2016;12(5):380–387. doi: 10.1016/j.dt.2016.05.001
  • Yin H, Li J-X, Su Y-J, et al. Current situation and development of maraging steel. J Iron Steel Res. 2014;26(3):1–6.
  • Verdiere A, Hofer C, De Waele S, et al. Precipitation in simultaneously nitrided and aged Mo-containing maraging steel. Mater Charact. 2017;131:21–30. doi: 10.1016/j.matchar.2017.06.014
  • Stiller K, Danoix F, Hättestrand M. Mo precipitation in a 12Cr-9Ni-4Mo-2Cu maraging steel. Mater Sci Eng: A. 1998;250(1):22–26. doi: 10.1016/S0921-5093(98)00531-0
  • Jägle E, Sheng Z, Kürnsteiner P, et al. Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing. Materials (Basel). 2017;10(1):8–12. doi: 10.3390/ma10010008
  • Seikh AH, Halfa H, Baig M, et al. Microstructure characterization and corrosion resistance behavior of new cobalt-free maraging steel produced through ESR techniques. J Mater Eng Perform. 2017;26(4):1589–1597. doi: 10.1007/s11665-017-2568-z
  • Tian J, Shahzad MB, Wang W, et al. Role of Co in formation of Ni-Ti clusters in maraging stainless steel. J Mater Sci Technol. 2018;34(09):1671–1675. doi: 10.1016/j.jmst.2018.04.020
  • Wang H, Jiang S-H, Wu Y, et al. A new generation of ultra-high strength steel strengthened by high-density and coherent nano-precipitation. Frontier Sci. 2018;12(1):45–50.
  • Mutua J, Nakata S, Onda T, et al. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Design. 2017;139:486–497. doi: 10.1016/j.matdes.2017.11.042
  • Monkova K, Zetkova I, Kučerová L, et al. Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel. Arch Appl Mech. 2019;89(5):791–804. doi: 10.1007/s00419-018-1389-3
  • Chongliang Z. Investigations on high deposition rate laser metal deposition for additive manufacturing application based on inconel 718. Changchun: University of Chinese Academy of Sciences; 2015.
  • Yang Q-Y, Wu Y-D, Sha F. Miscrostructure and mechanical properties of inconel 625 alloy manufactured by selective laser melting. Mater Mech Eng. 2016;6(40):83–87.
  • Mooney B, Kourousis KI, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: influence of the build orientation and heat treatments. Additive Manuf. 2019;25:19–31. doi: 10.1016/j.addma.2018.10.032
  • Abe F, Osakada K, Shiomi M, et al. The manufacturing of hard tools from metallic powders by selective laser melting. J Mater Process Technol. 2001;111(1):210–213. doi: 10.1016/S0924-0136(01)00522-2
  • Liu J. Tailoring the defects and microstructure and tensile properties investigation of h13 steel by select. J Mech Eng. 2018;54(16):101–107. doi: 10.3901/JME.2018.16.101
  • Yin S, Chen C, Yan X, et al. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Additive Manuf. 2018;22:592–600. doi: 10.1016/j.addma.2018.06.005
  • Tohru Aral, Gordon M.Baker, Charles E Bates, et al. ASM Handbook, Volum 4: heat treating. United States of America: ASM Internatonal, The Materials Information Company; 1991.
  • Guo WF, Guo C, Zhu Q, et al. Heat treatment behavior of the 18Ni300 maraging steel additively manufactured by selective laser melting. Materials Science Forum. 2018;941:2160–2166. doi: 10.4028/www.scientific.net/MSF.941.2160
  • Wang D, Song C, Yang Y, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater Design. 2016;100:291–299. doi: 10.1016/j.matdes.2016.03.111
  • Kürnsteiner P, Wilms MB, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition. Acta Mater. 2017;129:52–60. doi: 10.1016/j.actamat.2017.02.069
  • Pardal JM, Tavares SSM, Terra VF, et al. Modeling of precipitation hardening during the aging and overaging of 18Ni-Co-Mo-Ti maraging 300 steel. J Alloys Compd. 2005;393:109–113. doi: 10.1016/j.jallcom.2004.09.049
  • LeBrun T, Nakamoto T, Horikawa K, et al. Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17-4PH stainless steel. Mater Design. 2015;81:44–53. doi: 10.1016/j.matdes.2015.05.026
  • Viswanathan UK, Dey GK, Asundi MK. Precipitation hardening in 350 grade maraging steel. Metall Trans A (Phys Metall Mater Sci). 1993;24(11):2429–2442. doi: 10.1007/BF02646522
  • Rohit B, Muktinutalapati NR. Austenite reversion in 18% Ni maraging steel and its weldments. Mater Sci Technol. 2017;34(8):1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.