Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 10: STEEL WORLD ISSUE
336
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mechanical properties of ultra-high-strength steels at elevated temperatures

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 944-952 | Received 09 Aug 2019, Accepted 19 Oct 2019, Published online: 03 Nov 2019

References

  • Fontaras G, Franco V, Dilara P, et al. Development and review of euro 5 passenger car emission factors based on experimental results over various driving cycles. Sci Total Environ. 2014;468–469:1034–1042. doi: 10.1016/j.scitotenv.2013.09.043
  • Eckstein L, Göbbelsist R, Goede M, et al. Analyse sekundärer gewichtseinsparpotenziale in kraftfahrzeugen. ATZ – Autom Z. 2011;113:68–76.
  • Friedrich HE, Hülsebusch D. Elektrofahrzeugkonzepte und leichtbau:anforderungen für neue werkstoffe? Lightweight Design. 2009;2:18–24. doi: 10.1007/BF03223576
  • Sedlmaier A, Hennig R, Abee A. Fabrication of load optimized truck members with variable cross-sections by flexible roll forming. Proceedings of International Conference on Steels in Cars and Trucks, Salzburg; 2011.
  • Mehdi Y, Tisza M. Formability investigations of advanced high strength steels. IOP Conf Ser Mater Sci Eng. 2018;448(1):012022. doi: 10.1088/1757-899X/448/1/012022
  • Tsang KS, Ion W, Blackwell P, et al. Industrial validation of strain in cold roll forming of UHSS. Procedia Manuf. 2018;15:788–795. doi: 10.1016/j.promfg.2018.07.322
  • Kacar I, Ozturk F. Roll forming applications for automotive industry. OTEKON 2014, 7th Automotive Technology Congress; 26–27 May 2014; Bursa, Turkey.
  • Heston T. Better testing leads to better roll forming. The Fabricator. 2015;September-2015:80–83.
  • Yan PJ, Han JT, Jiang ZY, et al. Investigation of high strength steel for automotive roll-forming parts. Adv Mater Res. 2011;189193:3001–3006. doi: 10.4028/www.scientific.net/AMR.189-193.3001
  • Neugebauer R. Sheet metal forming at elevated temperatures. Ann CIRP. 2006;55(2):623–650. doi: 10.1016/j.cirp.2006.10.008
  • Yanagimoto J, Oyamada K. Springback-free isothermal forming of high-strength steel sheets and aluminum alloy sheets under warm and hot forming conditions. ISIJ Int. 2006;46(9):1324–1328. doi: 10.2355/isijinternational.46.1324
  • Eggertsen PA, Mattiasson K. On constitutive modeling for springback analysis. Int J Mech Sci. 2010;52:804–818. doi: 10.1016/j.ijmecsci.2010.01.008
  • Hara T, Takata M, Ota K, et al. The measurement of modulus of elasticity at high temperature and coefficient of thermal expansion for the comparison of the rate of frequency of thermal stress crackings in various steels. Tetsu-to-Hagane. 1963;49(13):1885–1891. doi: 10.2355/tetsutohagane1955.49.13_1885
  • Mäntyjärvi K, Merklein M, Karjalainen JA. UHS steel formability in flexible roll forming. Key Eng Mater. 2009;410411:661–668. doi: 10.4028/www.scientific.net/KEM.410-411.661
  • Hazra SK, Efthymiadis P, Alamoudi A, et al. The bendability of ultra high strength steels. J Phys Conf Ser. 2016;734:032097. doi: 10.1088/1742-6596/734/3/032097
  • Massardier V, Goune M, Fabregue D, et al. Evolution of microstructure and strength during the ultra-fast tempering of Fe–Mn–C martensitic steels. J Mater Sci. 2014;49(22):7782–7796. doi: 10.1007/s10853-014-8489-4
  • Karanjule DB, Bhamare SS, Rao TH. Effect of Young’s modulus on springback for low, medium and high carbon steels during cold drawing of seamless tubes. IOP Conf Ser Mater Sci Eng. 2018;346:012043. doi: 10.1088/1757-899X/346/1/012043
  • Zhang Y, Jiang SY, Zheng YF, et al. Numerical study of springback laws in metal forming of diaphragm of automotive horn. In: Guo D, Wang J, Lia Z, editors. Advances in materials manufacturing science & technology XIII, vol. II. Switzerland: Trans Tech Publications; 2009. p. 505–510.
  • Haleem A, Azmat Z. Young's modulus decrease after cold forming in high strength steels. Saarbrücken: Lap Lambert Academic Publishing GmbH KG; 2010.
  • Roy AK, Kukatla SR, Yarlagadda B, et al. Tensile properties of martensitic stainless steels at elevated temperatures. J Mater Eng Perform. 2005;14(2):212–218. doi: 10.1361/10599490523373
  • Gupta C, Chakravartty JK, Banerjee S. Microstructure, deformation and fracture behavior of Cr–Mo–V steels. Int J Metal Eng. 2013;2(2):142–148.
  • Wen B. Roll forming high-strength materials. The Fabricator. 2007;May 2007:60–62.
  • Speich GR, Leslie WC. Tempering of steel. Metal Trans. 1972;3(5):1043–1054. doi: 10.1007/BF02642436
  • Thomson RC, Miller MK. Carbide precipitation in martensite during the early stages of tempering Cr-and Mo-containing low alloy steels. Acta Mater. 1998;46:2203–2213. doi: 10.1016/S1359-6454(97)00420-5
  • Jung M, Lee SJ, Lee YK. Microstructural and dilatational changes during tempering and tempering kinetics in martensitic medium carbon steel. Metall Mater Trans A. 2009;40A:551–559. doi: 10.1007/s11661-008-9756-2
  • Olson GB, Owen WS. Martensite, martensitic nucleation. OH, USA: ASM International, Materials Park; 1992.
  • Sharma RC. Principles of heat treatment of steels. New Delhi: New Age International; 2003.
  • Grange A, Hribal CR, Porter LF. Hardness of tempered martensite in carbon and low-alloy steels. Metall Trans A. 1977;8A:1775–1785. doi: 10.1007/BF02646882

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.