Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 3
320
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Influence of burner nozzle configuration, and inlet gas composition on combustion, gas dynamics, temperature and concentration profile in a rotary hearth furnace

ORCID Icon &
Pages 229-241 | Received 06 Mar 2020, Accepted 12 Apr 2020, Published online: 15 May 2020

References

  • Ishikawa H, Kopfle J, Mcclelland J, et al. Rotary hearth furnace technologies for iron ore and recycling applications. Arch Metall Mater. 2008;53:541–545.
  • Rao YK. The kinetics of reduction of hematite by carbon. Metall Trans. 1971;2:1439–1447.
  • Fruehan R. The rate of reduction of iron oxides by carbon. Metall Trans. 1977;8B:279–286. doi: 10.1007/BF02657657
  • Srinivasan NS, Lahiri AK. Studies on the reduction of hematite by carbon. Metall Trans. 1977;8B:175–178. doi: 10.1007/BF02656367
  • Seaton CE, Foster JS, Velasco J. Reduction kinetics of hematite and magnetite pellets containing coal char. ISIJ Int. 1983;23:490–496. doi: 10.2355/isijinternational1966.23.490
  • Sun S, Lu WK. Building of mathematical model for the reduction behaviour of iron ore/coal composites. ISIJ Int. 1999;39:130–138. doi: 10.2355/isijinternational.39.130
  • Shi J, Donskoi E, et al. Modeling the reduction of an iron-ore-coal composite pellet with conduction and convection in an axisymmetric temperature field. Math Comput Model. 2005;42:45–60. doi: 10.1016/j.mcm.2005.05.014
  • Donskoi E, Mcelwain DLS. Mathematical modeling of non-isothermal reduction in highly swelling iron ore – coal char composite pellet. Ironmak Steelmak. 2001;28(5):384–389. doi: 10.1179/irs.2001.28.5.384
  • Halder S, Fruehan RJ. Reduction of iron-oxide-carbon composites: part III. Shrinkage of composite pellets during reduction. Metall Mater Trans. 2008;39B:809–817. doi: 10.1007/s11663-008-9201-3
  • Kumari V, Roy GG, Sen PK. Mathematical modeling to estimate the rate parameters and thermal efficiency for the reduction of iron ore- coal composite pellets in the multi-layer bed at rotary hearth furnace. Trans Indian Inst Met. 2014;68:109–116. doi: 10.1007/s12666-014-0434-3
  • Liu Y, Su FY, Wen Z, et al. Mathematical simulation of direct reduction process in zinc-bearing pellets. Int J Miner Metall Mater. 2013;20:1042–1049. doi: 10.1007/s12613-013-0832-2
  • Wu Y-l, Jiang Z-y, Zhang X-x, et al. Numerical simulation of the direct reduction of pellets in a rotary hearth furnace for zinc-containing metallurgical dust treatment. Int J Miner Metall Mater. 2013;20:636–644. doi: 10.1007/s12613-013-0777-5
  • Liu Y, Su F-Y, Wen Z, et al. CFD modelling of flow temperature and concentration field in a pilot scale rotary hearth furnace. Metall Trans B. 2014;45B:251–261. doi: 10.1007/s11663-013-0021-8
  • Liu Y, Wen Z, Lou G, et al. Numerical investigation of the effect of C/O mole ratio on the performance of rotary hearth furnace using a combined model. Metall Trans B. 2014;45B:2370–2380. doi: 10.1007/s11663-014-0160-6
  • Han SH, Baek SW, Kang SH, et al. Numerical analysis of heating characteristics of slab in a bench scale reheating furnace. Int J Heat Mass Transf. 2007;50:2019–2023. doi: 10.1016/j.ijheatmasstransfer.2006.10.048
  • Habibi A, Merci B, Heynderickx GJ. Impact of radiation models in CFD simulations of steam cracking furnaces. Comput Chem Eng. 2007;31(11):1389–1406. doi: 10.1016/j.compchemeng.2006.11.009
  • Magnussen BF, Hjertager BH. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. 16th Symp Combust. 1976;16(1):719–729. doi: 10.1016/S0082-0784(77)80366-4
  • Donskoi E, McElwain DLS. Estimation and modeling of parameters for direct reduction in iron ore/coal composites: part I. Physical parameters. Mater Trans B. 2003;34B:93–102. doi: 10.1007/s11663-003-0059-0
  • Akiyama T, Ohta H, Takahashi R, et al. Measurement and modeling of thermal conductivity for dense iron oxide and porous iron ore agglomerates in stepwise reduction. ISIJ Int. 1992;32(7):829–837. doi: 10.2355/isijinternational.32.829
  • Dasgupta S, Saleem S, Srirangam P, et al. A computational study on the reduction behavior of iron ore/carbon composite pellets in both single and multi-layer bed rotary hearth furnace. Mater Trans B. 2020;51:818–826. doi: 10.1007/s11663-020-01778-z
  • Bieda B, Grzesik K, Sala D, et al. Life cycle inventory processes of the integrated steel plant (ISP) in Krakow, Poland—coke production, a case study. Int J Life Cycle Assess. 2015;20:1089–1101. doi: 10.1007/s11367-015-0904-9
  • Ristovski Z, Morawska L, Thomas S, et al. Particle emissions from compressed natural gas engines. J Aerosol Sci. 2000;31(4):403–413. doi: 10.1016/S0021-8502(99)00530-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.