Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 3
183
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An image analysis-based method for automatic data extraction from pilot draining experiments

, , , &
Pages 263-274 | Received 12 Mar 2020, Accepted 04 May 2020, Published online: 31 May 2020

References

  • Geerdes M, Toxopeus H, van der Vliet C. Modern blast furnace ironmaking: an introduction. 2th ed. Amsterdam: IOS Press; 2009.
  • Tanzil WBU, Zulli P, Burgess JM, et al. Experimental model study of the physical mechanisms governing blast furnace hearth drainage. Trans ISIJ. 1984;24:197–205. doi: 10.2355/isijinternational1966.24.197
  • Tanzil WBU. Blast furnace hearth drainage [Ph.D. thesis]. Sydney: University of New South Wales; 1985.
  • Tanzil WBU, Pinczewski WV. Blast furnace hearth drainage: physical mechanisms. Chem Eng Sci. 1987;42:2557–2568. doi: 10.1016/0009-2509(87)87007-0
  • Fukutake T, Okabe K. Influences of slag tapping conditions on the amount of residual slag in the blast furnace hearth. Trans ISIJ. 1976;16:317–323. doi: 10.2355/isijinternational1966.16.317
  • Brännbacka J, Saxén H. Novel model for estimation of liquid levels in the blast furnace hearth. Chem Eng Sci. 2004;59:3423–3432. doi: 10.1016/j.ces.2004.05.007
  • Brännbacka J, Torrkulla J, Saxén H. Simple simulation model of blast furnace hearth. Ironmak Steelmak. 2005;32:479–486. doi: 10.1179/174328105X48115
  • Shao L, Saxén H. A simulation study of blast furnace hearth drainage using a two-phase flow model of the taphole. ISIJ Int. 2011;51:228–235. doi: 10.2355/isijinternational.51.228
  • Iida M, Ogura K, Hakone T. Analysis of drainage rate variation of molten iron and slag from blast furnace during tapping. ISIJ Int. 2008;48:412–419. doi: 10.2355/isijinternational.48.412
  • Iida M, Ogura K, Hakone T. Numerical study on metal/slag drainage rate deviation during blast furnace tapping. ISIJ Int. 2009;49:1123–1132. doi: 10.2355/isijinternational.49.1123
  • Saxén H. Model of draining of the blast furnace hearth with an impermeable zone. Met Mater Trans B. 2015;46:421–431. doi: 10.1007/s11663-014-0172-2
  • Roche M, Helle M, van der Stel J, et al. Off-line model of blast furnace liquid levels. ISIJ Int. 2018;58:2236–2245. doi: 10.2355/isijinternational.ISIJINT-2018-417
  • Nishioka K, Maeda T, Shimizu M. A three-dimensional mathematical modelling of drainage behavior in blast furnace hearth. ISIJ Int. 2005;45:669–676. doi: 10.2355/isijinternational.45.669
  • Nishioka K, Maeda T, Siiimizu M. Effect of various in-furnace conditions on blast furnace hearth drainage. ISIJ Int. 2005;45:1496–1505. doi: 10.2355/isijinternational.45.1496
  • Vångö M, Feilmayr C, Pirker S, et al. Data-assisted CFD modeling of transient blast furnace tapping with a dynamic deadman. Appl Math Model. 2019;73:210–227. doi: 10.1016/j.apm.2019.04.024
  • He Q, Evans G, Zulli P, et al. Cold model study of blast gas discharge from the taphole during the blast furnace hearth drainage. ISIJ Int. 2012;52:774–778. doi: 10.2355/isijinternational.52.774
  • Nouchi T, Yasui M, Takeda K. Effects of particle free space on hearth drainage efficiency. ISIJ Int. 2003;43:175–180. doi: 10.2355/isijinternational.43.175
  • Nouchi T, Sato M, Takeda K, et al. Effects of operation condition and casting strategy on drainage efficiency of the blast furnace hearth. ISIJ Int. 2005;45:1515–1520. doi: 10.2355/isijinternational.45.1515
  • Lau YM, Deen NG, Kuipers JAM. Development of an image measurement technique for size distribution in dense bubbly flows. Chem Eng Sci. 2013;94:20–29. doi: 10.1016/j.ces.2013.02.043
  • Karn A, Ellis C, Arndt R, et al. An integrative image measurement technique for dense bubbly flow with a wide size distribution. Chem Eng Sci. 2015;122:240–249. doi: 10.1016/j.ces.2014.09.036
  • Lau YM, Sujatha KT, Gaeini M, et al. Experimental study of the bubble size distribution in a pseudo-2D bubble column. Chem Eng Sci. 2013;98:203–211. doi: 10.1016/j.ces.2013.05.024
  • Legendre D, Zevenhoven R. Image analysis assessment of the effect on mixing on aqueous dissolution of CO2 and air bubble swarms in a bubble column. Chem Eng Res Des. 2019;146:379–390. doi: 10.1016/j.cherd.2019.04.008
  • Zhong S, Zou X, Zhang Z, et al. A flexible image analysis method for measuring bubble parameters. Chem Eng Sci. 2016;141:143–153. doi: 10.1016/j.ces.2015.10.033
  • Liu W, Shao L, Saxén H. Experimental model study of liquid-liquid and liquid-gas interfaces during blast furnace hearth drainage. Metals (Basel). 2020;10:496. doi: 10.3390/met10040496
  • Available from: https://youtu.be/_shNIsbh0ts
  • Roche M, Helle M, Saxén H. Principal component analysis of blast furnace drainage patterns. Processes. 2019;7:519. doi: 10.3390/pr7080519

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.