Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 3
262
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effect of impurity oxides on CWF (CaFe3O5) formation in lime magnetite pellets – part I: thermodynamic assessments and experimental investigations

, , , &
Pages 299-312 | Received 17 Jan 2020, Accepted 19 May 2020, Published online: 15 Jun 2020

References

  • Purohit S, Brooks G, Rhamdhani MA, et al. Analyses of CWF (CaFe3O5) phase formation in lime magnetite pellets. Ironmak Steelmak. 2019. doi: 10.1080/03019233.2019.1623594
  • Purohit S, Brooks G, Rhamdhani MA, et al. Alternative processing routes for magnetite ores. Ironmak Steelmak. 2019. doi:10.1080/03019233.2019.1569811.
  • Purohit S, Brooks G, Rhamdhani MA, et al. “Lime-magnetite pellets for iron-making”. AISTech conference proceedings; 2019; Pittsburgh, Pennsylvania, USA.
  • Purohit S, Rhamdhani MA, Brooks G, et al. “Alternative processing routes for magnetite ores”). AISTech conference proceedings; 2018; Philadelphia, Pennsylvania, USA.
  • Schürmann E, Janhsen U. Reduction equilibria of the calcium ferrites in the Fe–Fe2O3–CaO system as a function of oxygen concentration and temperature. Steel Res Int. 1993;64(7), Wiley Online Library, 331–339. doi: 10.1002/srin.199301031
  • Schürmann E, Kraume G. Schmelzgleichgewichte im system FeO–Fe2O3–CaO. Steel Res Int. 1976;47(7) Wiley Online Library, pp. 435–439.
  • Hillert M, Selleby M, Sundman B. An assessment of the Ca–Fe–O system. Metall Trans A. 1990;21(10) Springer, pp. 2759–2776. doi: 10.1007/BF02646071
  • Timucin M. (1969). “Phase equilibria and thermodynamic studies in the system CaO–FeO–Fe₂O₃–SiO₂,” University of Missouri-Rolla.
  • Hidayat T, Shishin D, Decterov SA, et al. Thermodynamic optimization of the Ca–Fe–O system. Metall Mater Trans B. 2016;47(1):256–281. doi: 10.1007/s11663-015-0501-0
  • Selleby M. An assessment of the Ca–Fe–O–Si system. Metall Mater Trans B. 1997;28(4):577–596. doi: 10.1007/s11663-997-0030-6
  • Turkdogan E. Oxygen potentials and phase equilibria in the Fe–Ca–O system. The American Institute of Mining, Metallurgical, and Petroleum Engineers. 1961;221(3):546–553.
  • Reeve D, Gregory A. Modification for the oxygen potential diagram for the system Fe–Ca–O. Trans Inst Min Metall (Sect. C. 1967;76:273–277.
  • Kim H, Park J, Cho Y. Crystal structure of calcium and aluminium silicoferrite in iron ore sinter. Ironmak Steelmak. 2002;29(4) Taylor & Francis, pp. 266–270. doi: 10.1179/030192302225004511
  • Fernández-González D, Ruiz-Bustinza I, Mochón J, et al. Iron ore sintering: Process. Miner Process Extr Metall Rev. 2017;38(1) Taylor & Francis, pp:36–46. doi: 10.1080/08827508.2016.1244059
  • Scarlett NV, Pownceby MI, Madsen IC, et al. Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter. Metallurgical and Materials Transactions B. 2004;35(5)Springer, 929–936. doi: 10.1007/s11663-004-0087-4
  • Webster NA, Pownceby MI, Madsen IC, et al. Effect of oxygen partial pressure on the formation mechanisms of complex Ca-rich ferrites. ISIJ Int. 2013;53(5) The Iron and Steel Institute of Japan, pp.:774–781. doi: 10.2355/isijinternational.53.774
  • Webster NA, Pownceby MI, Madsen IC, et al. Silico-ferrite of calcium and aluminum (SFCA) iron ore sinter bonding phases: new insights into their formation during heating and cooling. Metall Mater Trans B. 2012;43(6), Springer, pp.:1344–1357. doi: 10.1007/s11663-012-9740-5
  • Patrick TR, Pownceby MI. Stability of silico-ferrite of calcium and aluminum (SFCA) in air-solid solution limits between 1240°C and 1390°C and phase relationships within the Fe2 O3–CaO–Al2O3–SiO2 (FCAS) system. Metall Mater Trans B. 2002;33(1) Springer, pp. 79–89. doi: 10.1007/s11663-002-0088-0
  • Mumme W, Clout J, Gable R. “The crystal structure of SFCA-I, Ca3.18 Fe3+ 14.66 Al1. 34 Fe2+ 0.82 O28, a homologue of the aenigmatite structure type, and new crystal structure refinements of ß-CFF, Ca2.99Fe3+ 14.30 Fe2+ 0.55 O25 and Mg-free SFCA, Ca2. 45Fe3+9.04 Al1.74Fe2+ 0.16 Si0.6O20,” Neues Jahrbuch für Mineralogie-Abhandlungen. Schweizerbart’sche Verlagsbuchhandlung. 1998;173(1):93–117.
  • Webster NA, O’dea DP, Ellis BG, et al. Effects of Gibbsite, Kaolinite and Al-rich Goethite as Alumina Sources on silico-ferrite of calcium and Aluminium (SFCA) and SFCA-I iron Ore sinter Bonding phase formation. ISIJ Int. 2017;57(1) The Iron and Steel Institute of Japan, pp.:41–47. doi: 10.2355/isijinternational.ISIJINT-2016-332
  • Liao F, Guo x. The effects of Al2O3 and SiO2 on the formation Process of silico-ferrite of calcium and aluminum (SFCA) by solid-state reactions. Minerals. 2019;9(101):1–12. doi:10.3390/min9020101.
  • Mochón J, Cores A, Ruiz-Bustinza Í, et al. Iron ore sintering Part 2. quality indices and productivity. Dyna. 2014;81(183) 2006, Revista DYNA, pp:168–177. doi: 10.15446/dyna.v81n183.41568
  • Purohit S, Brooks G, Rhamdhani MA, et al. Effect of impurity oxides on CWF (CaFe3O5) formation in lime magnetite pellets – Part II: microstructural analysis and physical and mechanical testings. Ironmak Steelmak. 2019. doi:10.1080/03019233.2020.1774251.
  • Bale CW, Chartrand P, Degterov S, et al. Factsage thermochemical software and databases. Calphad. 2002;26(2) Elsevier, pp.:189–228. doi: 10.1016/S0364-5916(02)00035-4
  • Murao R, Harano T, Kimura M, et al. Thermodynamic modeling of the SFCA phase Ca2 (Fe, Ca)6 (Fe, Al, Si) 6O20. ISIJ Int. 2018;58(2) The Iron and Steel Institute of Japan, pp. 259–266. doi: 10.2355/isijinternational.ISIJINT-2017-459
  • Topas V. General profile and structure analysis software for powder diffraction data. Karlsruhe: Bruker AXS; 2008.
  • Hill R, Howard C. Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J Appl Crystallogr. 1987;20(6) International Union of Crystallography, pp.467–474. doi: 10.1107/S0021889887086199
  • Bruker AXS. (2013). TOPAS V5: “General Profile and Structure Analysis Software for Powder Diffraction Data”. Version 5.
  • Hamilton WC. Neutron diffraction investigation of the 119 K transition in magnetite. Phys Rev. 1958;110(5):1050. doi: 10.1103/PhysRev.110.1050
  • Maslen E, Streltsov V, Streltsova N, et al. Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr B Struct Sci. 1995;51(6) International Union of Crystallography, pp. 929–939. doi: 10.1107/S0108768195006434
  • Evrard O, Malaman B, Jeannot F, et al. Mise en évidence de CaF2e4O6 et détermination des structures cristallines des ferrites de calcium CaFe2+nO4+n (n = 1, 2, 3): nouvel exemple d’intercroissance. J Solid State Chem. 1980;35(1) Elsevier, pp. 112–119. doi: 10.1016/0022-4596(80)90471-5
  • Vanpeteghem CB, Angel RJ, Zhao J, et al. The effect of oxygen vacancies and aluminium substitution on the high-pressure properties of brownmillerite-structured Ca2Fe2- xAlxO5. Phys Chem Miner. 2008;35(9) Springer, pp.:493–504. doi: 10.1007/s00269-008-0244-4
  • Fjellvåg H, Grønvold F, Stølen S, et al. On the crystallographic and magnetic structures of nearly stoichiometric iron monoxide. J Solid State Chem. 1996;124(1): Elsevier, pp. 52–57. doi: 10.1006/jssc.1996.0206
  • McMurdie HF, Morris MC, Evans EH, et al. (1975). Powder Diffraction, vol. 25, Sec. 12.
  • Downs R T, Palmer D C. The pressure behavior of alpha cristobalite P = room pressure. Am Mineral. 1994;79:9–14.
  • Cruickshank DWJ. Refinements of Structures containing Bonds between Si, P, S or Cl and O or N. X. â-Ca2SiO4. Acta Crystallogr. 1964;17:685. doi: 10.1107/S0365110X64001724
  • Huang T, Parrish W, Masciocchi N, et al. Adv X-Ray Anal 1990;33:295.
  • Redhammer GJ, Tippelt G, Roth G, et al. Structural variations in the brownmillerite series Ca2(Fe2-xAlx)O5: Single-crystal X-ray diffraction at 25 °C and high-temperature X-ray powder diffraction (25 °C to 1000 °C). Am. Mineral. 2004;89:405–420. doi: 10.2138/am-2004-2-322
  • Hamilton WC. Neutron diffraction investigation of the 119 K transition in magnetite. Phys Rev. 1958;110(5):APS, p. 1050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.