Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 4
264
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Al addition on austenite grain growth, submicrometre and nanometre particles in heat-affected zone of steel plates with Mg deoxidation

, , , ORCID Icon &
Pages 417-427 | Received 06 Jun 2020, Accepted 13 Jul 2020, Published online: 17 Aug 2020

References

  • Wang RZ, Yang J, Xu LY. Improvement of heat-affected zone toughness of steel plates for high heat input welding by inclusion control with Ca deoxidation. Metals. 2018;8(11):946.
  • Yang J, Zhu K, Wang RZ, et al. Improving the toughness of heat affected zone of steel plate by use of fine inclusion particles. Steel Res Int. 2011;82(5):552–556.
  • Ogibayashi S. Advances in technology of oxide metallurgy. Nippon Steel Tech Rep. 1994;61:70–76.
  • Yang J, Xu LY, Zhu K, et al. Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation. Steel Res Int. 2015;86(6):619–625.
  • Xu LY, Yang J, Wang RZ, et al. Effect of Mg content on the microstructure and toughness of heat-affected zone of steel plate after high heat input welding. Metall Mater Trans A. 2016;47(7):3354–3364.
  • Xu LY, Yang J, Wang RZ, et al. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J Iron Steel Res Int. 2018;25(4):433–441.
  • Xu LY, Yang J, Wang RZ, et al. Effect of welding heat input on microstructure and toughness of heated-affected zone in steel plate with Mg deoxidation. Steel Res Int. 2017;88(12):1700157.
  • Wen B, Song B. In situ observation of the evolution of intragranular acicular ferrite at Mg-containing inclusions in 16Mn steel. J Manuf Sci Prod. 2013;13(1–2):61–  72.
  • Zhu K, Yang J, Wang RZ, et al. Effect of Mg addition on inhibiting austenite grain growth in heat affected zones of Ti-bearing low carbon steels. J Iron Steel Res Int. 2011;18(9):60–64.
  • Kim HS, Chang CH, Lee HG. Evolution of inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels. Scr Mater. 2005;53(11):1253–1258.
  • Kojima A, Kiyose A, Uemori R, et al. Super high HAZ toughness technology with fine microstructure imparted by fine particles. Nippon Steel Tech Rep. 2004;90:292–413.
  • Lin CK, Su YH, Hwang WS, et al. On pinning effect of austenite grain growth in Mg-containing low-carbon steel. Mater Sci Tech. 2018;34(5):596–606.
  • Zhu K, Yang ZG. Effect of magnesium on the austenite grain growth of the heat-affected zone in low-carbon high-strength steels. Metall Mater Trans A. 2011;42(8):2207–2213.
  • Shen Y, Wan XL, Liu Y, et al. The significant impact of Ti content on microstructure-toughness relationship in the simulated coarse-grained heated-affected zone of high-strength low-alloy steels. Ironmak Steelmak. 2019;46(6):584–596.
  • Moon J, Kim S, Jeong H, et al. Influence of Nb addition on the particle coarsening and microstructure evolution in a Ti-containing steel weld HAZ. Mat Sci Eng A. 2007;454–455:648–653.
  • Song MM, Hu CL, Song B, et al. Effect of Ti-Mg treatment on the impact toughness of heat affected zone in 0.15% C–1.31% Mn steel. Steel Res Int. 2018;89(3):1700355.
  • Moon J, Kim S, Lee J, et al. Limiting austenite grain size of TiN-containing steel considering the critical particle size. Scr Mater. 2007;56(12):1083–1086.
  • Karmakar A, Kundu S, Roy S, et al. Effect of microalloying elements on austenite grain growth in Nb-Ti and Nb-V steels. Mater Sci Tech. 2014;30(6):653–664.
  • Fu LM, Wang HR, Wang W, et al. Austenite grain growth prediction coupling with drag and pinning effects in low carbon Nb microalloyed steels. Mater Sci Tech. 2011;27(6):996–1001.
  • Maalekian M, Radis R, Militzer M, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Mater. 2012;60(3):1015–1026.
  • Liu ZY, Bao YP, Wang M, et al. Austenite grain growth of medium-carbon alloy steel with aluminum additions during heating process. Int J Min Met Mater. 2019;26(3):282–290.
  • Maropoulos S, Karagiannis S, Ridley N. Factors affecting prior austenite grain size in low alloy steel. J Mater Sci. 2006;42(4):1309–1320.
  • Manohar PA, Dunne DP, Chandra T, et al. Grain growth predictions in microalloyed steels. ISIJ Int. 1996;36(2):194–200.
  • Sha QY, Sun ZQ. Grain growth behavior of coarse-grained austenite in a Nb-V-Ti microalloyed steel. Mat Sci Eng A. 2009;523(1–2):77–84.
  • Bepari MA. Effects of second-phase particles on coarsening of austenite in 0.15 Pct carbon steels. Metall Mater Trans A. 1989;20(1):13–16.
  • Ohta H, Inoue R, Suito H. Effect of TiN precipitates on austenite grain size in Fe-1.5% Mn-0.12% Ti-Si (<1.1%)-C (0.05 and 0.15%) alloy. ISIJ Int. 2008;48(3):294–300.
  • Tomita Y, Saito N, Tsuzuki T, et al. Improvement in HAZ toughness of steel by TiN-MnS addition. ISIJ Int. 1994;34(10):829–835.
  • Wan X, Zhou B, Nune KC, et al. In-situ microscopy study of grain refinement in the simulated heat-affected zone of high-strength low-alloy steel by TiN particle. Sci Technol Weld Joining. 2017;22(4):343–352.
  • Moon J, Kim S, Lee J, et al. Coarsening behavior of the (Ti, Nb)(C, N) complex particle in a microalloyed steel weld heat-affected zone considering the critical particle size. Metall Mater Trans A. 2007;38(11):2788–2795.
  • Baker TN. Titanium microalloyed steels. Ironmak Steelmak. 2019;46(1):1–55.
  • Yan W, Shan YY, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels. Metall Mater Trans A. 2006;37(7):2147–2158.
  • Cabrera JM, Omar AA, Prado JM. Abnormal grain growth in a medium-carbon microalloyed steel. J Mater Sci. 1996;31(5):1303–1309.
  • Gladman T. Abnormal grain growth during the heat treatment of steel. Mater Sci Forum. 1992;94-96:113–128.
  • Fernandez J, Illescas S, Guilemany JM. Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel. Mater Lett. 2007;61(11–12):2389–2392.
  • Fujiyama N, Nishibata T, Seki A, et al. Austenite grain growth simulation considering the solute-drag effect and pinning effect. Sci Technol Adv Mat. 2017;18(1):88–95.
  • Du J, Strangwood M, Davis CL. Effect of TiN particles and grain size on the charpy impact transition temperature in steels. J Mater Sci Technol. 2012;28(10):878–888.
  • Moon J, Lee C, Uhm S, et al. Coarsening kinetics of TiN particle in a low alloyed steel in weld HAZ: considering critical particle size. Acta Mater. 2006;54(4):1053–1061.
  • Xu LY, Yang J, Wang RZ. Influence of Al content on the inclusion-microstructure relationship in the heat-affected zone of a steel plate with Mg deoxidation after high-heat-input welding. Metals. 2018;8(12):1027.
  • Inoue K, Ohnuma I, Ohtani H, et al. Solubility product of TiN in austenite. ISIJ Int. 1998;38(9):991–997.
  • Dumitrescu LFS, Hillert M. Reassessment of the solubility of TiC and TiN in Fe. ISIJ Int. 1999;39(1):84–90.
  • Box GEP, Hunter WG, Hunter JS, et al. Statistics for experimenters. Technometrics. 1978;21(3):15–23.
  • Poths RM, Higginson RL, Palmiere EJ, et al. Complex precipitation behaviour in a microalloyed plate steel. Scr Mater. 2001;44(1):147–151.
  • Craven AJ, He K, Garvie LA, et al. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels I. (Ti, Nb)(C, N) particles. Acta Mater. 2000;48(15):3857–3868.
  • Brandes EA, Brook G. Smithells metals reference book. Oxford: Butterworths-Heinemann Ltd; 1992.
  • Gladman T. The physical metallurgy of microalloyed steels. London: Maney; 1997.
  • Charleux M, Poole WJ, Militzer M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel. Metall Mater Trans A. 2001;32(7):1635–1647.
  • Crooks MJ, Garratt-Reed AJ, Vander Sande JB, et al. Precipitation and recrystallization in some vanadium and vanadium-niobium microalloyed steels. Metall Mater Trans A. 1981;12(12):1999–2013.
  • Porter DA, Easterling KE. Phase transformations in metals and alloys. London: Chapman & Hall; 1996.
  • Wang HR, Wang W. Coupled model for particle dissolution and coarsening in microalloyed steels. Mater Sci Tech. 2007;23(11):1305–1308.
  • Tian QR, Wang GC, Shang DL, et al. In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel. Metall Mater Trans B. 2018;49(6):3137–3150.
  • Manohar PA, Ferry M, Chandra T. Five decades of the Zener equation. ISIJ Int. 1998;38(9):913–924.
  • Ashby MF, Ebeling R. On the determination of the number, size, spacing, and volume fraction of spherical second-phase particles from extraction replicas. Trans Met Soc AIME. 1966;236(10):1396–1404.
  • Gómez M, Medina SF, Valles P. Determination of driving and pinning forces for static recrystallization during hot rolling of a niobium microalloyed steel. ISIJ Int. 2005;45(11):1711–1720.
  • Wang QF, Zhang CY, Li RX, et al. Characterization of the microstructures and mechanical properties of 25CrMo48 V martensitic steel tempered at different times. Mat Sci Eng A. 2013;559(Jan 1):130–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.