Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 4
171
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Design and analysis of a suction mechanism for the vacuum degassing process

, &
Pages 457-465 | Received 14 May 2020, Accepted 13 Aug 2020, Published online: 08 Sep 2020

References

  • Ghosh A. Secondary steelmaking: principles and applications. CRC Press; 2000. View online.
  • Capurro C, Cerrutti G, Cicutti C. Influence of vacuum degassing on steel cleanliness. In: Conference: 9th International Conference on Clean Steel. View online.
  • Fruehan RJ. Foundation AISE steel. In: The making, shaping, and treating of steel: steelmaking and refining volume. AISE Steel Foundation; 1998. View online.
  • Steneholm K, Andersson M, Tilliander A, et al. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing. Ironmak Steelmak. 2013;40:199–205. View online. doi: 10.1179/1743281212Y.0000000029
  • Knight J. The use of steam ejectors for the vacuum degassing of steel. Proc Inst Mech Eng. 1966;181:225–241. View online. doi: 10.1243/PIME_PROC_1966_181_024_02
  • Deshpande VS, Modak JP. Application of RCM for safety considerations in a steel plant. Reliab Eng Syst Safety. 2002;78:325–334. View online. doi: 10.1016/S0951-8320(02)00177-1
  • Hucknall DJ. Vacuum technology and applications. Elsevier; 2013. View online.
  • Pianthong K, Seehanam W, Behnia M, et al. Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Convers Manage. 2007;48:2556–2564. View online. doi: 10.1016/j.enconman.2007.03.021
  • Abadi SMANR, Kouhikamali R. CFD-aided mathematical modeling of thermal vapor compressors in multiple effects distillation units. Appl Math Model. 2016;40:6850–6868. View online. doi: 10.1016/j.apm.2016.02.032
  • Birgenheier DB, Butzbach TL, Bolt DE, et al. Designing steam-jet vacuum systems. Chem Eng. 1993;100:116. View online.
  • Sriveerakul T, Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: part 1. Validation of the CFD results. Int J Therm Sci. 2007;46:812–822. View online. doi: 10.1016/j.ijthermalsci.2006.10.014
  • Sriveerakul T, Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: part 2. Flow structure of a steam ejector influenced by operating pressures and geometries. Int J Therm Sci. 2007;46:823–833. View online. doi: 10.1016/j.ijthermalsci.2006.10.012
  • Lin C, Cai W, Li Y, et al. Numerical investigation of geometry parameters for pressure recovery of an adjustable ejector in multi-evaporator refrigeration system. Appl Therm Eng. 2013;61:649–656. View online. doi: 10.1016/j.applthermaleng.2013.08.033
  • Yadav RL, Patwardhan AW. Design aspects of ejectors: effects of suction chamber geometry. Chem Eng Sci. 2008;63:3886–3897. View online. doi: 10.1016/j.ces.2008.04.012
  • Yan J, Wen N, Wang L, et al. Optimization on ejector key geometries of a two-stage ejector-based multi-evaporator refrigeration system. Energy Convers Manage. 2018;175:142–150. View online. doi: 10.1016/j.enconman.2018.08.110
  • Ding Z, Wang L, Zhao H, et al. Numerical study and design of a two-stage ejector for subzero refrigeration. Appl Therm Eng. 2016;108:436–448. View online. doi: 10.1016/j.applthermaleng.2016.07.104
  • Chattopadhyay K, Isac M, Guthrie RIL. Applications of computational fluid dynamics (CFD) in iron-and steelmaking: part 1. Ironmak Steelmak. 2010;37:554–561. View online. doi: 10.1179/030192310X12731438631804
  • Chattopadhyay K, Isac M, Guthrie RIL. Applications of computational fluid dynamics (CFD) in iron-and steelmaking: part 2. Ironmak Steelmak. 2010;37:562–569. View online. doi: 10.1179/030192310X12731438631840
  • Bruce Simon, Cheetham V, Legge G. Recent operating experience with dry running vacuum pumps on vacuum degassing and vacuum oxygen decarburising systems. In: Iron & Steel Society International Technology Conference (ISS Tech); Citeseer. View online.
  • Bruce S., Cheetham V, Legge G. Recent experience of mechanical vacuum pumps replacing steam ejectors in VOD and VD processes. In: 4th Asia Steel International Steel; 2009. View online.
  • ESDU. Ejector and jet pump. London: ESDU International Ltd; 1985. View online.
  • Kouhikamali R, Sharifi N. Experience of modification of thermo-compressors in multiple effects desalination plants in Assaluyeh in IRAN. Appl Therm Eng. 2012;40:174–180. View online. doi: 10.1016/j.applthermaleng.2012.02.002
  • Croquer S, Poncet S, Galanis N. Comparison of ejector predicted performance by thermodynamic and CFD models. Int J Refrig. 2016;68:28–36. View online. doi: 10.1016/j.ijrefrig.2016.04.026
  • Maghsoodi A, Afshari E, Ahmadikia H. Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm. Appl Therm Eng. 2014;71:410–418. View online. doi: 10.1016/j.applthermaleng.2014.06.067
  • Haghparast P, Sorin MV, Nesreddine H. The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle. Energy. 2018;162:728–743. View online. doi: 10.1016/j.energy.2018.08.017
  • Yang X, Long X, Yao X. Numerical investigation on the mixing process in a steam ejector with different nozzle structures. Int J Therm Sci. 2012;56:95–106. View online. doi: 10.1016/j.ijthermalsci.2012.01.021
  • Liu J, Wang L, Jia L. A predictive model for the performance of the ejector in refrigeration system. Energy Convers Manage. 2017;150:269–276. View online. doi: 10.1016/j.enconman.2017.08.021
  • Bartosiewicz Y, Aidoun Z, Mercadier Y. Numerical assessment of ejector operation for refrigeration applications based on CFD. Appl Therm Eng. 2006;26:604–612. View online. doi: 10.1016/j.applthermaleng.2005.07.003
  • Bartosiewicz Y, Aidoun Z, Desevaux P, et al. Numerical and experimental investigations on supersonic ejectors. Int J Heat Fluid Flow. 2005;26:56–70. View online. doi: 10.1016/j.ijheatfluidflow.2004.07.003
  • Lucas C, Rusche H, Schroeder A, et al. Numerical investigation of a two-phase CO2 ejector. Int J Refrig. 2014;43:154–166. View online. doi: 10.1016/j.ijrefrig.2014.03.003
  • Petrovic A, Svorcan J, Pejcev A, et al. Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods. Appl Math Model. 2018;57:206–225. View online. doi: 10.1016/j.apm.2018.01.016
  • Ruangtrakoon N, Thongtip T, Aphornratana S, et al. CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle. Int J Therm Sci. 2013;63:133–145. View online. doi: 10.1016/j.ijthermalsci.2012.07.009
  • Besagni G, Mereu R, Chiesa P, et al. An integrated lumped parameter-CFD approach for off-design ejector performance evaluation. Energy Convers Manage. 2015;105:697–715. View online. doi: 10.1016/j.enconman.2015.08.029
  • Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. Pearson Education Limited; 2007. View online.
  • Berkeley FD. Ejectors have a wide range of uses. Petroleum Refiner. 1958 Dec;37:95–100. View online.
  • Mohammadi A. An investigation of geometrical factors of multi-stage steam ejectors for air suction. Energy. 2019;186:115808. View online. doi: 10.1016/j.energy.2019.07.138
  • Wang X-D, Dong J-L. Numerical study on the performances of steam-jet vacuum pump at different operating conditions. Vacuum. 2010;84:1341–1346. View online. doi: 10.1016/j.vacuum.2010.03.001
  • Sharifi N. Numerical study of non-equilibrium condensing supersonic steam flow in a jet-pump based on supersaturation theory. Int J Mech Sci. 2020;165:105221. View online. doi: 10.1016/j.ijmecsci.2019.105221

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.