Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 9
546
Views
4
CrossRef citations to date
0
Altmetric
Articles

Electrolysis of iron with oxygen gas evolution from molten sodium borate electrolytes

, , , , ORCID Icon, & ORCID Icon show all
Pages 1030-1037 | Received 19 Jun 2020, Accepted 06 Dec 2020, Published online: 11 Jan 2021

References

  • World Steel Association. World steel in figures. Brussels: World Steel Association; 2018.
  • Quader MA, Ahmed S, Dawal S, et al. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program. Renew Sustain Energy Rev. 2016;55:537–549.
  • Meijer K, Denys M, Lasar J, et al. ULCOS: ultra-low CO2 steelmaking. Ironmak Steelmak. 2009;36(4):249–251.
  • Croezen H, Korteland M. Technological developments in Europe, Delft; 2010.
  • Allanore A, Lavelaine H, Valentin G, et al. Electrodeposition of metal iron from dissolved species in alkaline media. J Electrochem Soc. 2007;154(12):E187–E193.
  • Cox A, Fray D. Electrolytic formation of iron from haematite in molten sodium hydroxide. Ironmak Steelmak. 2008;35(8):561–566.
  • Yin H, Tang D, Zhu H, et al. Production of iron and oxygen in molten K2CO3–Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode. Electrochem Commun. 2011;13(12):1521–1524.
  • Li H, Jia L, Liang J-l, et al. Study on the direct electrochemical reduction of Fe2O3 in NaCl–CaCl2 melt. Int J Electrochem Sci. 2019;14(12):11267–11278.
  • Wang D, Gmitter AJ, Sadoway DR. Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J Electrochem Soc. 2011;158(6):E51–E54.
  • Kim H, Paramore J, Allanore A, et al. Electrolysis of molten iron oxide with an iridium anode: the role of electrolyte basicity. J Electrochem Soc. 2011;158(10):E101–E105.
  • Liu J-H, Zhang G-H, Chou K-C. Electrolysis of molten FeOx-containing CaO–Al2O3–SiO2 slags under constant current field. J Electrochem Soc. 2015;162(12):E314–E318.
  • Zhang K, Jiao H, Zhou Z, et al. Electrochemical behavior of Fe (III) ion in CaO–MgO–SiO2–Al2O3–NaF–Fe2O3 melts at 1673 K. J Electrochem Soc. 2016;163(13):D710–D714.
  • Allanore A. Electrochemical engineering for commodity metals extraction. Electrochem Soc Interface. 2017;26(2):63–68.
  • Allanore A. Features and challenges of molten oxide electrolytes for metal extraction. J Electrochem Soc. 2015;162(1):E13–E22.
  • Allanore A, Sadoway DR. US Patent No. 8764962 B2; 2014.
  • Allanore A. Electrochemical engineering of anodic oxygen evolution in molten oxides. Electrochim Acta. 2013;110:587–592.
  • Duffy JA. A review of optical basicity and its applications to oxidic systems. Geochim Cosmochim Acta. 1993;57(16):3961–3970.
  • Barati M, Coley KS. Electrical and electronic conductivity of CaO–SiO2–FeOx slags at various oxygen potentials: Part I. experimental results. Metall Mater Trans B. 2006;37(1):41–49.
  • Shartsis L, Capps W, Spinner S. Density and expansivity of alkali borates and density characteristics of some other binary glasses. J Am Ceram Soc. 1953;36(2):35–43.
  • Shartsis L, Capps W, Spinner S. Viscosity and electrical resistivity of molten alkali borates. J Am Ceram Soc. 1953;36(10):319–326.
  • Bale CW, Bélisle E, Chartrand P, et al. Reprint of: factSage thermochemical software and databases, 2010–2016. Calphad. 2016;55:1–19.
  • Fredriksson P, Sundman B. A thermodynamic assessment of the Fe–Pt system. Calphad. 2001;25(4):535–548.
  • Mamantov G, Manning D, Dale J. Reversible deposition of metals on solid electrodes by voltammetry with linearly varying potential. J Electroanal Chem. 1965;9(4):253–259.
  • Takahashi K, Miura Y. Electrochemical studies on diffusion and redox behavior of various metal ions in some molten glasses. J Non-Cryst Solids. 1980;38–39:527–532.
  • Popov K, Grgur B, Djokić SS. Fundamental aspects of electrometallurgy. New York: Springer; 2007.
  • Barati M, Coley KS. Electrical and electronic conductivity of CaO–SiO2–FeOx slags at various oxygen potentials: Part II. Mechanism and a model of electronic conduction. Metall Mater Trans B. 2006;37(1):51–60.
  • Wiencke J, Lavelaine H, Panteix P-J, et al. Electrolysis of iron in a molten oxide electrolyte. J Appl Electrochem. 2018;48(1):115–126.
  • Allanore A, Yin L, Sadoway DR. A new anode material for oxygen evolution in molten oxide electrolysis. Nature. 2013;497:353–356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.