Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 7
467
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of heat transfer characteristics during water jet impingement cooling of a high-temperature steel surface

ORCID Icon & ORCID Icon
Pages 819-832 | Received 15 Oct 2020, Accepted 04 Jan 2021, Published online: 24 Jan 2021

References

  • Hasan MN, Monde M, Mitsutake Y. Homogeneous nucleation boiling during jet impingement quench of hot surfaces above thermodynamic limiting temperature. Int J Heat Mass Transf. 2011;54:2837–2843.
  • Lee J, Samanta S, Steeper M. Review of accelerated cooling of steel plate. Ironmaking Steelmaking. 2015;42(4): 268–273.
  • Agrawal C. Surface quenching by jet impingement – a review. Steel Res Int. 2018;1800285: 1–22. https://doi.org/https://doi.org/10.1002/srin.201800285.
  • Filipovic J, Incropera FP, Viskanta R. Rewetting temperatures and velocity in a quenching experiment. Exp Heat Transf. 1995;8(4):257–270.
  • Cox SD, Hardy SJ, Parker DJ. Influence of runout table operation setup on hot strip quality, subject to initial strip condition: heat transfer issues. Ironmaking Steelmaking. 2001;28(5):363–372. https://doi.org/https://doi.org/10.1179/irs.2001.28.5.363.
  • Wiskel JB, Deng H, Jefferies C, et al. Infrared thermography of TMCP microalloyed steel skelp at upcoiler and its application in quantifying laminar jet/skelp interaction. Ironmaking Steelmaking. 2011;38(1):35–44.
  • Filipovic J, Viskanta R, lncropera F. Cooling of a moving steel strip by an array of round jets. Steel Res. 1994;65(12):541–547. https://doi.org/https://doi.org/10.1002/srin.199401210.
  • Lee PJ, Raudensky M, Horsky J. Development of accelerated cooling for new plate mill. Ironmak Steelmak. 2013;40:598–604.
  • Sikdar S, Mukhopadhyay A. Numerical determination of heat transfer coefficient for boiling phenomenon at runout table of hot strip mill. Ironmaking Steelmaking. 2004;31(6):495–502.
  • Wang B, Lin D, Xie Q, et al. Heat transfer characteristics during jet impingement on a high-temperature plate surface. Int J Heat Mass Transf. 2016;101:902–910.
  • Leocadio H, van der Geld CWM, Passos JC. Rewetting and boiling in jet impingement on high temperature steel surface. Phys Fluids. 2018;30:122102. https://doi.org/https://doi.org/10.1063/1.5054870.
  • Carbajo JJ. A study on the rewetting temperature. Nucl Eng Des. 1985;84:21–52.
  • Lee SG, Kaviany M, Kim C, et al. Quasi-steady front in quench subcooled-jet impingement boiling: experiment and analysis. Int J Heat Mass Transf. 2017;113:622–634.
  • Karwa N, Stephan P. Experimental investigation of free-surface jet impingement quenching process. Int J Heat Mass Transf. 2013;64:1118–1126.
  • Wang Z, Zhong M, Deng J. Experimental investigation on the transient film boiling heat transfer during quenching of FeCrAl. Ann Nucl Energy. 2021;150:107842.
  • Takrouri K, Luxat J, Hamed M. Experimental investigation of quench and re-wetting temperatures of hot horizontal tubes well above the limiting temperature for solid–liquid contact. Nucl Eng Des. 2017;311:167–183.
  • Hatta N, Kokado J, Hanasaki K. Numerical analysis of cooling characteristics for water bar. Trans Iron Steel Inst Jpn. 1983;23:555–564. https://doi.org/https://doi.org/10.2355/isijinternational1966.23.555.
  • Woodfield PL, Monde M, Mozumder AK. Observations of high temperature impinging-jet boiling phenomena. Int J Heat Mass Transf. 2005;48(10):2032–2041.
  • Xu F, Gadala M. Heat transfer behavior in the impingement zone under circular water jet. Int J Heat Mass Transf. 2006;49:3785–3799.
  • Agrawal C, Kumar R, Gupta A. Rewetting and maximum surface heat flux during quenching of hot surface by round water jet impingement. Int J Heat Mass Transf. 2012;55:4772–4782.
  • Ishigai S, Nakanishi S, Ochi T. Boiling heat transfer for a plane water jet impinging on a hot surface). Proceedings 6th Int. heat transfer Conference; Toronto, Canada. 1978. DOI: https://doi.org/10.1615/IHTC6.860.
  • Ochi T, NakanishI S, Kaji M, et al. Cooling of a hot plate with an impinging circular water jet. In: T Veziroglu, A Bergles, Amsterdam: Elsevier Science Publishers B.V.; 1984. p. 671–681.
  • Liu Z, Wang J. Study on film boiling heat transfer for water jet impinging on high temperature flat plate. Int J Heat Mass Transf. 2001;44:2475–2481.
  • Sinha J, Hochreiter L, Cheung F. Effects of surface roughness, oxidation level, and liquid subcooling on the minimum film boiling temperature. Exp Heat Transfer: J Thermal Energy Generation, Transport, Storage, Conversion. 2003;23(1):45–60.
  • Lienhard JH, Shamsundar N, Biney PO. Spinodal lines and equations of state: a review. Nucl Eng Des. 1986;95:297–314. https://doi.org/https://doi.org/10.1016/0029-5493(86)90056-7.
  • Leocadio H, Geld Cvd, Passos JC. Degassing, boiling and rewetting in free surface jet quenching. 9th World Conference on experimental heat transfer, fluid Mechanics and Thermodynamics, Iguazu Falls, Brazil. 2017.
  • Paul G, Das P, Manna I. Assessment of the process of boiling heat transfer during rewetting of a vertical tube bottom flooded by alumina nanofluid. Int J Heat Mass Transf. 2016;94:390–402.
  • Bui TD, Dhir VK. Transition boiling heat transfer on a vertical surface. J Heat Transfer. 1985;107:756–763.
  • Prieto M, Ruiz L, Menendez J. Thermal performance of numerical model of hot strip mill runout table. Ironmaking Steelmaking. 2001;28:474–480.
  • Zumbrunnen DA, Incropera F, Viskanta R. Method and apparatus for measuring heat transfer distributions on moving and stationary plates cooled by a planar liquid jet. Exp Therm Fluid Sci. 1990;3(2):202–213.
  • Timm W, Weinzierl K, Leipertz A. Heat transfer in subcooled jet impingement boiling at high wall temperatures. Int J Heat Mass Transf. 2003;46:1385–1393.
  • Sabioni ACS, Ramos RPB, Ji V, et al. About the role of chromium and oxygen ion diffusion on the growth mechanism of oxidation films of the AISI 304 austenitic stainless steel. Oxid Met. 2012;78:211–220.
  • Incropera FP, DeWitt D, Bergman TL, et al. Fundamentals of heat and mass transfer. 7th ed. Wiley; 2011.
  • Horsky J, Hrabovsky J, Raudensky M. Impact of the oxide scale on spray cooling intensity. 10th International Conference on Heat Transfer; Fluid Mechanics and Thermodynamics, Orlando. 2014.
  • J. Taylor, An Introduction to error analysis – the study of uncertainties in physical measurements, 2nd ed. University of Colorado, 1996.
  • Stevens J, Webb BW. Measurements of flow structure in the radial layer of impinging free-surface liquid jets. Int J Heat Mass Transf. 1993;36(15):3751–3758.
  • Stevens J, Webb BW. Measurements of flow structure in the stagnation zone of impinging free-surface liquid jets. Int J Heat Mass Transf. 1993;36(17):4283–4286.
  • Stevens J, Webb BW. Measurements of the free surface flow structure under an impinging free liquid jet. J Heat Transfer. 1992;114(1):79–84.
  • Bhatt N, Raj R, Varshney P, et al. Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanol-tween20-water solution at very high initial surface temperature. Int J Heat Mass Transf. 2017;110:330–347.
  • Ravikumar SV, Jha JM, Sarkar I, et al. Ultrafast cooling of medium carbon steel strip by air atomised water sprays with dissolved additives. Ironmaking Steelmaking. 2014;41(7):529–538.
  • Ravikumar SV, Jha JM, Tiara AM. Experimental investigation of air-atomized spray with aqueous polymer additive for high heat flux applications. Int J Heat Mass Transf. 2014;72:362–377.
  • Karwa N, Schmidt L, Stephan P. Hydrodynamics of quenching with impinging free-surface jet. Int J Heat Mass Transf. 2012;55:3677–3685.
  • Trujillo DM, Busby HR. Practical inverse analysis in engineering. Boca Raton: CRC Press; 1997; https://doi.org/https://doi.org/10.1201/9780203710951.
  • Wang B, Lin B, Zhang B, et al. Local heat transfer characteristics of multi Jet impingement on high temperature plate surfaces. ISIJ Int. 2018;58(1):132–139.
  • Webb BW, Ma CF. Single-phase jet impingement heat transfer. In: Advances in heat transfer, vol. 26. San Diego: Academic Press; 1995. p. 105–217.
  • Wolf DH, Incropera FP, Viskanta R. Jet impingement boiling. In: Advances in heat transfer, vol. 23. San Diego: Academic Press; 1993. p. 1–132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.