Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 9
615
Views
26
CrossRef citations to date
0
Altmetric
Articles

Effect of Al content on non-metallic inclusions in Fe–23Mn–xAl–0.7C lightweight steels

, ORCID Icon, , &
Pages 1038-1047 | Received 14 Feb 2021, Accepted 22 Mar 2021, Published online: 18 Apr 2021

References

  • Zambrano OA. A general perspective of Fe–Mn–Al–C steels. J Mater Sci. 2018;53:14003–14062.
  • Chen S, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels. Prog Mater Sci. 2017;89:345–391.
  • Zuazo I, Hallstedt B, Lindahl B, et al. Low-density steels: complex metallurgy for automotive applications. JOM. 2014;66:1747–1758.
  • Sohn SS, Choi K, Kwak JH, et al. Novel ferrite–austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms. Acta Mater. 2014;78:181–189.
  • Zhang J, Hu C, Zhang Y, et al. Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe-20Mn-9Al-1.2C-xCr steels. Mater Des. 2020;186:108307.
  • Park SJ, Hwang B, Lee KH, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum. Scr Mater. 2013;68:365–369.
  • Wang Y, Yang J, Wang R, et al. Effects of Non-metallic inclusions on hot ductility of high manganese TWIP steels containing different aluminum contents. Metall Mater Trans B. 2016;47:1697–1712.
  • Steenken B, Rezende J, Senk D. Hot ductility behaviour of high manganese steels with varying aluminium contents. Mater Sci Technol. 2017;33:567–573.
  • Kang SE, Banerjee J, Mintz B. Influence of S and AlN on hot ductility of high Al, TWIP steels. Mater Sci Technol. 2012;28:589–596.
  • Vaz Penna R, Bartlett LN, Constance T. Understanding the role of inclusions on the dynamic fracture toughness of high strength lightweight FeMnAl steels. Int J Metalcast. 2019;13:286–299.
  • Maciejewski J. The effects of sulfide inclusions on mechanical properties and failures of steel components. J Fail Anal Preven. 2015;15:169–178.
  • Park JH, Kim DJ, Min DJ. Characterization of nonmetallic inclusions in high-manganese and aluminum-alloyed austenitic steels. Metall Mater Trans A. 2012;43:2316–2324.
  • Alba M, Nabeel M, Dogan N. Effect of aluminium content on the formation of inclusions in Fe–5Mn–xAl steels. Ironmak Steelmak. 2020:1–8. https://doi.org/10.1080/03019233.2020.1791549.
  • Nabeel M, Alba M, Karasev A, et al. Characterization of inclusions in 3rd generation advanced high-strength steels. Metall Mater Trans B. 2019;50:1674–1685.
  • Alba M, Nabeel M, Dogan N. Investigation of inclusion formation in light-weight Fe–Mn–Al steels using automated scanning electron microscope equipped with energy-dispersive X-Ray spectroscopy. Steel Res Int. 2019;91:1900477.
  • Liu H, Liu J, Shen S, et al. Influence of Al content on the characteristics of non-metallic inclusions and precipitation behaviors of AlN inclusions in TWIP steel. Chin J Eng. 2017;39:1008–1019.
  • Jang JM, Paek MK, Pak JJ. Thermodynamics of nitrogen solubility and AlN formation in multi-component high Mn steel melts. ISIJ Int. 2017;57:1821–1830.
  • Paek MK, Jang JM, Jiang M, et al. Thermodynamics of AlN formation in high manganese-aluminum alloyed liquid steels. ISIJ Int. 2013;53:973–978.
  • Grajcar A, Galisz U, Bulkowski L. Non-metallic inclusions in high manganese austenitic alloys. Arch Mater Sci Eng. 2011;50:21–30.
  • Zhu H, Zhao J, Wang W, et al. A statistical method for calculating the average distance of non-metallic inclusions in metallic materials. CN Patent, No.: CN 202010419438.9. 2020 May 18.
  • Liu H, Liu J, Michelic S, et al. Characteristics of AlN inclusions in low carbon Fe–Mn–Si–Al TWIP steel produced by AOD-ESR method. Ironmak Steelmak. 2016;43:171–179.
  • Paek MK, Jang JM, Kang HJ, et al. Reassessment of AlN(s)=Al+N equilibration in liquid iron. ISIJ Int. 2013;53:535–537.
  • Zhuang C, Liu J, Mi Z, et al. Non-Metallic inclusions in TWIP steel. Steel Res Int. 2014;85:1432–1439.
  • Sigworth GK, Elliott JF. The thermodynamics of liquid dilute iron alloys. Met Sci. 1974;8:298–310.
  • Kim DH, Jung MS, Nam H, et al. Thermodynamic relation between silicon and aluminum in liquid iron. Metall Mater Trans B. 2012;43:1106–1112.
  • Itoh H, Hino M, Ban-ya S. Assessment of Al deoxidation equilibrium in liquid iron. Tetsu-to-Hagané. 1997;83:773–778.
  • Tuling A, Mintz B. Crystallographic and morphological aspects of AlN precipitation in high Al, TRIP steels. Mater Sci Technol. 2016;32:568–575.
  • Xin X, Yang J, Wang Y, et al. Effects of Al content on non-metallic inclusion evolution in Fe–16Mn–xAl–0.6C high Mn TWIP steel. Ironmak Steelmak. 2016;43:234–242.
  • Liu H, Liu J, Michelic SK, et al. Characterization and analysis of non-metallic inclusions in low-carbon Fe-Mn-Si-Al TWIP steels. Steel Res Int. 2016;87:1723–1732.
  • Bramfitt BL. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall Trans. 1970;1:1987–1995.
  • Dovidenko K, Oktyabrsky S, Narayan J, et al. Aluminum nitride films on different orientations of sapphire and silicon. J Appl Phys. 1996;79:2439–2445.
  • Sasai K. Direct measurement of agglomeration force exerted between alumina particles in molten steel. ISIJ Int. 2014;54:2780–2789.
  • Yin H, Shibata H, Emi T, et al. “In-situ” observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts.. ISIJ Int. 1997;37:936–945.
  • Cao L, Wang G, Zhao Y, et al. MgAl2O4 inclusion agglomeration on the surface of liquid steel. Metall Mater Trans B. 2019;50:2502–2507.
  • Tian Q, Wang G, Shang D, et al. In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel. Metall Mater Trans B. 2018;49:3137–3150.
  • Sasai K. Interaction between alumina inclusions in molten steel due to cavity bridge force. ISIJ Int. 2016;56:1013–1022.
  • Chen P, Zhu C, Li G, et al. Effect of sulphur concentration on precipitation behaviors of MnS-containing inclusions in GCr15 bearing steels after LF refining. ISIJ Int. 2017;57:1019–1028.
  • Slack GA, Tanzilli RA, Pohl RO, et al. The intrinsic thermal conductivity of AIN. J Phys Chem Solids. 1987;48:641–647.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.