Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 10: STEEL WORLD ISSUE
1,825
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Computer modelling of burden distribution in the blast furnace equipped by a bell-less top charging system

ORCID Icon, ORCID Icon &
Pages 1226-1238 | Received 21 Mar 2021, Accepted 02 Jul 2021, Published online: 27 Aug 2021

References

  • Radhakrishnan VR, Ram KM. Mathematical model for predictive control of the bell-less top charging system of a blast furnace. J Process Control. 2001;11:565–586.
  • Saxén H, Hinnelä J. Model for fast evaluation of charging programs in the blast furnace. Miner Process Extr Metall Rev. 2004;25:1–27.
  • Zhu Q, Lü C-L, Yin Y-X, et al. Burden distribution calculation of bell-less top of blast furnace based on multi-radar data. J Iron Steel Res Int. 2013;20:33–37.
  • Nag S, Gupta A, Paul S, et al. Prediction of heap shape in blast furnace burden distribution. ISIJ Int. 2014;54:1517–1520.
  • Matsuzaki S. Estimation of stack profile of burden at peripheral zone of blast furnace top. ISIJ Int. 2003;43:620–629.
  • Kondoh M, Konishi Y, Okabe K, et al. Interprétation cinématique d essais de chargement à l échelle 1 dans un haut fourneau à gueulard sans cloche. Rev Met Paris. 1981;78:733–744.
  • Mitra T, Saxén H. Model for fast evaluation of charging programs in the blast furnace. Metall Mater Trans B. 2014;45:2382–2394.
  • Park J-I, Jung H-J, Jo M-K, et al. Mathematical modeling of the burden distribution in the blast furnace shaft. Met Mater Int. 2011;17:485–496.
  • Mehta A, Barker GC. The dynamics of sand. Rep Prog Phys. 1994;57:383–416.
  • Fu D, Chen Y, Zhou CQ. Mathematical modeling of blast furnace burden distribution with non-uniform descending speed. Appl Math Model. 2015;39:7554–7567.
  • Rahman M, Shinohara K, Zhu HP, et al. Size segregation mechanism of binary particle mixture in forming a conical pile. Chem Eng Sci. 2011;66:6089–6098.
  • Zhang J, Qiu J, Guo H, et al. Simulation of particle flow in a bell-less type charging system of a blast furnace using the discrete element method. Particuology. 2014;16:167–177.
  • Yamada T, Sato M, Miyazaki N, et al. Distribution of burden materials and gas permeability in a large volume blast furnace. Kawasaki Steel Giho. 1974;6:16–37.
  • Iwamoto N, Makino Y. State of sulphur in a synthetic blast furnace slag and relation between segregation of sulphur and morphology of primary phase. Tetsu-to-Hagane. 1983;69:220–227.
  • Ishii K, Ariyama T, Japan HU. Advanced pulverized coal injection technology and blast furnace operation. Oxford: Pergamon; 2000.
  • Azadi P, Minaabad SA, Bartusch H, et al. Nonlinear prediction model of blast furnace operation status. In: Sauro Pierucci, editor. Computer aided chemical engineering. Vol. 48. Milano: Elsevier; 2020. p. 217–222.
  • Geerdes M, Chaigneau R, Lingiardi O. Modern blast furnace ironmaking: an introduction. 4th ed. Amsterdam: IOS Press; 2020.
  • Zhou C, Tang G, Wang J, et al. Comprehensive numerical modeling of the blast furnace ironmaking process. JOM. 2016;68:1353–1362.