Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 10: STEEL WORLD ISSUE
496
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Kinetic model of dephosphorization in the new double slag converter steelmaking process

, , &
Pages 1277-1290 | Received 04 Jan 2021, Accepted 20 Jul 2021, Published online: 08 Aug 2021

References

  • Kawai Y, Nakashima H. On the rate of dephosphorization of liquid iron by solid lime. Tetsu-to-Hagané. 1967;53(11):1188–1191.
  • Aratani F, Sanbongi K. Kinetic study of dephosphorization of liquid iron with oxidizing slag. Tetsu-to-Hagané. 1972;58(9):1225–1231.
  • Aratani F, Sanbongi K. Kinetic study of dephosphorization of liquid iron with solid CaO. Tetsu-to-Hagané. 1972;58(9):1217–1224.
  • Kawai Y, Nakamura H, Kawakami k, et al. Thermodynamics and kinetics of hot metal dephosphorization by CaO based slag containing CaF2. Tetsu-to-Hagané. 1983;69(15):1755–1762.
  • Kitamura S, Kitamura T, Shibata K, et al. Effect of stirring energy, temperature and flux composition on hot metal dephosphorization kinetics. ISIJ Int 1991;31(11):1322–1328.
  • Kawai Y, Doi S, Mori H. Rate of dephosphorization of liquid iron by CaO-FeO-SiO2 slag. Tetsu-to-Hagané. 1977;63(3):391–399.
  • Kunisada K, Iwai H. Rate of dephosphorization of liquid iron by the slag of CaO-SiO2-FeO system. Tetsu-to-Hagané. 1984;70(14):1681–1688.
  • Kawara S, Hayashi S, Katase Y, et al. Tetsu-to-Hagané. 1976;62(11):S524.
  • Kunisada K, Iwai H. Rate of dephosphorization of liquid iron by the flux of Na2O-SiO2 system. Tetsu-to-Hagané. 1985;71(1):63–69.
  • Doi S, Mori K, Kawai Y, et al. The rate of oxidation of phosphorus and silicon in liquid iron by molten slags. Tetsu-to-Hagané. 1986;72(10):1560–1566.
  • Ohguchi S, Robertson DGC, Deo B, et al. Ironmak Steelmak. 1984;11(4):202–213.
  • Kawai Y, Nakao R, Mori K. Dephosphorization of liquid iron by CaF2-base fluxes. Trans. Iron Steel Inst. Jpn. 1984;24(7):509–514.
  • Mori K, Fukami Y, Kawai Y. Rate of dephosphorization of liquid iron-carbon alloys by molten slags. Trans Iron Steel Inst Jpn. 1988;28(4):315–318.
  • Pan W, Sano M, Hirasawa M, et al. Kinetics of phosphorus transfer between iron oxide containing slag and molten iron of high carbon concentration under Ar-O2 atmosphere. ISIJ Int 1993;33(4):479–487.
  • Pan W, Ohya M, Hirasawa M, et al. Estimation of slag-metal interfacial oxygen potential in phosphorus reaction between FetO containing slag and molten iron of high carbon concentration. ISIJ Int 1993;33(8):847–854.
  • Kawai Y. Fundamentals of the kinetics of metal-slag reactions. Tetsu-to-Hagané. 1984;70(14):1640–1647.
  • Dong Y, Jiang H, Chai Y. J East China Inst Metall. 1993;10(2):7–12.
  • Mukawa S, Mizukami Y. Effect of stirring energy and rate of oxygen supply on the rate of hot metal dephosphorization. ISIJ Int 1995;35(11):1374–1380.
  • Sato T, Nakashima K, Mori K. Dephosphorization rate of high carbon iron melts by CaO-based slags. Tetsu-to-Hagané. 2001;87(10):643–649.
  • Ishikawa M, Matsuo T, Kawaguchi T. Hot metal dephosphorization behavior by sintered dephosphorization agent contain Al2O3. Tetsu-to-Hagané. 2005;91(6):528–536.
  • Kitamura S, Shibata H, Maruoka N. Kinetic model of hot metal dephosphorization by liquid and solid coexisting slags. Steel Res Int 2008;79(8):586–590.
  • Pahlevani F, Shibata H, Maruoka N, et al. Behavior of vanadium and niobium during hot metal dephosphorization by CaO–SiO2–FeO slag. ISIJ Int 2011;51(10):1624–1630.
  • Kitamura S, Kitamura T, Aida E, et al. Development of analysis and control method for hot metal dephosphorization process by computer simulation. ISIJ Int 1991;31(11):1329–1335.
  • Kitamura S, Aoki H, Okohira K. Dephosphorization reaction of chromium containing molten iron by CaO-based flux. ISIJ Int 1994;34(5):401–407.
  • Kitamura S, Miyamoto K, Shibata H, et al. Analysis of dephosphorization reaction using a simulation model of hot metal dephosphorization by multiphase slag. ISIJ Int 2009;49(9):1333–1339.
  • Kitamura S, Ito K, Pahlevani F, et al. Development of simulation model for hot metal dephosphorization process. Tetsu-to-Hagané. 2014;100(4):491–499.
  • Matsui A, Nabeshima S, Matsuno H, et al. Kinetics behavior of iron oxide formation under the condition of oxygen top blowing for dephosphorization of hot metal in the basic oxygen furnace. Tetsu-to-Hagané. 2009;95(3):207–216.
  • Pahlevani F, Kitamura S, Shibata H, et al. Simulation of steel refining process in converter. Steel Res Int 2010;81(8):617–622.
  • Ogasawara Y, Miki Y, Uchida Y, et al. Development of high efficiency dephosphorization System in decarburization converter utilizing FetO dynamic control. ISIJ Int 2013;53(10):1786–1793.
  • Wu W, Meng H, Liu L. China Metall. 2014;24:256–260.
  • Lytvynyuk Y, Schenk J, Hiebler M, et al. Thermodynamic and kinetic model of the converter steelmaking process. Part 1: the Description of the BOF model. Steel Res Int 2014;85(4):537–543.
  • Lytvynyuk Y, Schenk J, Hiebler M, et al. Thermodynamic and kinetic model of the converter steelmaking process. Part 2: the model validation. Steel Res Int 2014;85(4):544–563.
  • Dogan N, Brooks GA, Rhamdhani MA. Comprehensive model of oxygen steelmaking part 1: model development and validation. ISIJ Int 2011;51(7):1086–1092.
  • Rout BK, Brooks G, Rhamdhani MA, et al. Dynamic model of basic oxygen steelmaking process based on multi-zone reaction kinetics: model derivation and validation. Metall Mater Trans B. 2018;49(2):537–557.
  • Dering D, Swartz C, Dogan N. Dynamic modeling and simulation of basic oxygen furnace (BOF) operation. Processes. 2020;8(4):483.
  • Ogawa Y, Yano M, Kitamura S, et al. Development of the continuous dephosphorization and decarburization process using BOF. Steel Res Int 2003;74(2):70–76.
  • Iwasaki M, Matsuo M. Shin Nittetsu Giho. 2011;391:88–93.
  • Wang X, Zhu G, Li h, et al. China Metall. 2013;23(4):40–46.
  • Sundberg Y. Scand J Metall 1978;7(2):81–87.
  • Anon: ‘Steelmaking data sourcebook revised edition’; 1984, Tokyo, The Japan Society for the Promotion of Science(JSPS).
  • Ban-Ya S. Mathematical expression of slag-metal reactions in steelmaking process by quadratic formalism based on the regular solution model. ISIJ Int 1993;33(1):2–11.
  • Kai T, Okohira K, Hirai M, et al. Influence of bath agitation intensity on metallurgical characteristics in top and bottom blown converter. Tetsu-to-Hagané. 1982;68(14):1946–1954.
  • Isobe K, Maede H, Ozawa K, et al. Analysis of the scrap melting rate in high carbon molten iron. Tetsu-to-Hagané. 1990;76(11):269–276.
  • Huang X. Principles of Iron and steel metallurgy. Vol 4. Beijing: Publishing house of Metallurgical Industry; 2013.
  • Liu Y, Jiang M, Wang D. Heat balance calculation of chromium ore smelting reduction process in a converter. Adv Mater Res. 2012;460:338–341.
  • Matsushima M, Yadoomaru S, Mori K, et al. Fundamental study on the dissolution rate of CaO into liquid slag. Tetsu to Hagane. 1976;62(2):182–190.
  • Liang Y, Che Y. Handbook of thermodynamics data of inorganic matter. Shenyang: Northeastern University; 1993.
  • Jiang L. Fundamentals of metallurgical plant design. Beijing: Publishing house of Metallurgical Industry; 2013.
  • Yang W, Yang J, Shi Y, et al. Precipitation behaviour of phosphorus in high strength IF steel during laminar cooling. Ironmak Steelmak. 2020: 1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.