Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 49, 2022 - Issue 6
356
Views
0
CrossRef citations to date
0
Altmetric
Articles

Predictive models for molten slags viscosity and electrical conductivity based on directed chemical bonds concept

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 572-580 | Received 20 Dec 2021, Accepted 03 Jan 2022, Published online: 06 Feb 2022

References

  • Schiefelbein S, Sadoway D. A high-accuracy, calibration-free technique for measuring the electrical conductivity of molten oxides. Metall Mater Trans B. 1997;28:1141–1149.
  • Cheng J, et al. Measurement and calculation of the viscosity of metals – a review of the current status and developing trends. Meas Sci Technol. 2014;25:062001. [cited 2021 Dec 15]. Available from: https://iopscience.iop.org/article/10. 1088/0957-0233/25/6/062001/meta.
  • Seo W, Zhou D, Tsukihashi F. Calculation of thermodynamic properties and phase diagrams for the CaO-CaF2, BaO-CaO and BaO-CaF2 systems by molecular dynamics simulation. Mater Trans. 2005;46:643–650.
  • Korolczuk-Hejnak M, Migas P, Ślęzak W. Determination of the liquid steel viscosity curves using a high temperature rheometer. 1st International Conference on Rheology and Modeling of Materials (IC-RMM1); 7–11 October 2013; Miskolc-Lillafüred, Hungary; 2015. Published in Journal of Physics: Conference Series 602 [online]: IOP Publishing Ltd. [cited 2021 Dec 7]. Available from: https://iopscience.iop.org/article/10. 1088/1742-6596/602/1/012037.
  • Zhang J, et al. Desulphurisation ability of blast furnace slag containing high Al2O3 and 5 mass% TiO2 at 1773 K. Ironmak Steelmak. 2016;43(5):378–384. [cited 2021 Dec 7]. Available from: https://doi.org/10.1080/03019233.2015.1104070.
  • GOST 30756-2001. Fluxes for electroslag technologies. General technical conditions [online]. IPK Standards Publishing House: 18; 2005. [cited 2021 Dec 8]. Available from: https://docs.cntd.ru/document/1200038331.
  • Wacker Cheme AG. Electroflux – the success factor in electroslag remelting (ESR) [online]. [cited 2021 Dec 8]. Available from: https://www.wacker.com/h/medias/6321-E-final-0416.pdf.
  • SCMG. Fluxes for Electroslag Remelting [online]. [cited 2021 Dec 8]. Available from: https://www.scmgeurope.de/esr-flux/.
  • Klyuev M, Volkov S. Electroslag remelting. Moskow: Metallurgy; 1984.
  • Shahbazian F, Sichen D, Seetharaman S. The effect of addition of Al2O3 on the viscosity of CaO- “FeO"-SiO2-CaF2 slags. ISIJ Int. 2002;42(2):155–162. [cited 2021 Dec 8]. Available from: https://doi.org/10.2355/isijinternational.42.155.
  • Mitchell A. Slag functions in the ESR process. In: A.Kharicha, R. Mark Ward editors. Proceedings of the International Symposium on Liquid Metal Processing and Casting (LMPC-2015), 20–24 September 2015, Leoben, Austria. Institute of Physics Publishing (IOP); 2005. p. 195–200.
  • Nafziger RH. Electroslag melting process. Bureau of Mines, Albany (OR): Albany Metallurgy Research Center; 1976.
  • Arh B, Podgornik B, Burja J. Electroslag remelting: a process overview. Mater Technol. 2016;50(6):971–979. doi:10.17222/mit.2016.108.
  • Paton B, Medovar B. Electroslag furnaces. Kiev: Naukova dumka; 1976.
  • Medovar L, Petrenko V, Sybir A. Quality and efficiency of ESR ingots production. In: Proceedings of 2nd International Conference on Casting, Rolling and forging (ICRF-2014). 7–9 May 2014 Italy. Associazione Italiana di Metallurgia; 2014.
  • Mills K. The estimation of slag properties [online]. Short course presented as part of Southern African pyrometallurgy; 2011. [cited 2021 Dec 8]. Available from: https://www.pyro.co.za/KenMills/KenMills.pdf.
  • Yesin O, Geld P. Physical chemistry of pyrometallurgical processes, Ch. 2. Moscow: Metallurgy; 1966.
  • Frenkel J. Kinetic theory of fluids. Nauka; 1975.
  • Medovar B, Tsykulenko A, Shevtsov V. Metallurgy of electroslag process. Kiev: Naukova dumka; 1986.
  • Prikhodko E. Metalchemistry of multicomponent systems. Metallurgy; 1995.
  • Arkel A, Flood E, Bright N. The electrical conductivity of molten oxides. Can J Chem. 1953;31(11):1009–1019.
  • Hara S, Hashimoto H, Ogino K. Electrical conductivity of molten slag for electro-slag remelting. Trans ISIJ. 1983;23:1053–1058.
  • Hou D, et al. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmak Steelmak. 2016;43(7):517–525. [cited 2021 Dec 5]. Available from: https://doi.org/10.1080/03019233.2015.1110920.
  • Yan Z, et al. Structure-based viscosity model development for titania aluminosilicate slags. Ironmak Steelmak. 2018;47(2):203–209. [cited 2021 Dec 5]. Available from: https://doi.org/10.1080/03019233.2018.1510876.
  • Yang XM, et al. A sulfide capacity prediction model of CaO-SiO2-MgO-FeO-MnO-Al2O3 slags during the LF refining process based on the ion and molecule coexistence theory. Metall Mater Trans B. 2012;43:241–266. [cited 2021 Dec 8]. Available from: https://doi.org/10.1007/s11663-011-9612-4.
  • Yang XM, et al. A thermodynamic model of phosphorus distribution ratio between CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 slags and molten steel during a top–bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall Mater Trans B. 2011;42:738–770. [cited 2021 Dec 8]. Available from: https://doi.org/10.1007/s11663-011-9491-8.
  • Yang X, et al. Thermodynamic models for predicting dephosphorisation ability and potential of CaO–FeO–Fe2O3–Al2O3–P2O5 slags during secondary refining process of molten steel based on ion and molecule coexistence theory. Ironmak Steelmak. 2016;43:663–687. [cited 2021 Dec 8]. Available from: https://doi.org/10.1179/1743281215Y.0000000032.
  • Li B, et al. A phosphorus distribution prediction model for CaO–SiO2–MgO–FeO–Fe2O3–Al2O3–P2O5 slags based on the IMCT. Ironmak Steelmak. 2020;47(7):771–780. [cited 2021 Dec 10]. Available from: https://doi.org/10.1080/03019233.2019.1608421.
  • Duan SС, et al. A manganese distribution prediction model for CaO–SiO2–FeO–MgO–MnO–Al2O3 slags based on IMCT. Ironmak Steelmak. 2017;44:168–184. [cited 2021 Dec 10]. Available from: https://doi.org/10.1080/03019233.2016.1198859.
  • Duan SC, et al. A thermodynamic model for calculating manganese distribution ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3–TiO2–CaF2 ironmaking slags and carbon saturated hot metal based on the IMCT. Ironmak Steelmak. 2018;45(7):655–664. [cited 2021 Dec 10]. Available from: https://doi.org/10.1080/03019233.2017.1318547.
  • Yang XH, et al. Calculation model of mass action concentrations for CaO-MnO-FeO-SiO2-MgO-Al2O3 slags based on the Ion and molecule coexistence theory. Adv Mat Res. 2012;476–478:134–138. [cited 2021 Dec 10]. Available from: https://doi.org/10.4028/www.scientific.net/AMR.476-478.134.
  • Mills KC, Sridhar S. Viscosities of ironmaking and steelmaking slags. Ironmak Steelmak. 1999;26(4):262–268. [cited 2021 Dec 10]. Available from: https://doi.org/10.1179/030192399677121.
  • Shu QF, et al. New method for viscosity estimation of slags in the CaO–FeO–MgO–MnO–SiO2 system using optical basicity. Ironmak Steelmak. 2010;37(5):387–391. [cited 2021 Dec 10]. Available from: https://doi.org/10.1179/030192310X12683075004717.
  • Toop G, Samis CS. Activities of ions in silicate melts. Trans Metall Soc AIME. 1962;224(5):878.
  • Moretti R. Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts. Ann Geophys. 2005;48(4–5):583–608. https://doi.org/10.4401/ag-3221.
  • Ray HS, Pal S. Simple method for theoretical estimation of viscosity of oxide melts using optical basicity. Ironmak Steelmak. 2004;31(2):125–130. [cited 2021 Dec 10]. Available from: https://doi.org/10.1179/030192304225012097.
  • Urbain G. Viscosity estimation of slags. Steel Res. 1987;58:111–116. [cited 2021 Dec 10]. Available from: https://doi.org/10.1002/srin.198701513.
  • Zhang GH, Chou KC. Influence of CaF2 on viscosity of aluminosilicate melts. Ironmak Steelmak. 2013;40(5):376–380. [cited 2021 Dec 10]. Available from: https://doi.org/10.1179/1743281212Y.0000000055.
  • Shu QF, Zhang X, Chou KC. Structural viscosity model for aluminosilicate slags. Ironmak Steelmak. 2015;42(9):641–647. [cited 2021 Dec 10]. Available from: https://doi.org/10.1179/1743281214Y.0000000264.
  • Xu JF, et al. Viscosity of low silica CaO–5MgO–Al2O3–SiO2 slags. Ironmak Steelmak. 2014;41(7):486–492. [cited 2021 Dec 10]. Available from: https://doi.org/10.1179/1743281213Y.0000000142.
  • Gasik MM, Gasik MI. Multi-vatiation analysis and optimization of electrical conductivity of MnO-CaO-SiO2 slags. In: Vartiainen A, editor. Proceedings of the 12th International Ferroalloys Congress. Sustainable Future; 2010 Jun 6–9; Helsinki, Finland. Outotec Oyj; 2010. p. 537–545.
  • Gasik MM, Gasik MI. Modeling of the relationship between the parameters of the Arrhenius equation in relation to thermally activated transfer phenomena in slag melts for the production of manganese ferroalloys. Metall Min Ind. 2014;2:15–19.
  • Korol I, Gasik M. Modeling of the linear dependence of the logarithm of the preexponential multiplier on the activation energy of the Arrhenius equation according to the data on the viscosity and electrical conductivity of metallurgical slags. Metall Min Ind. 2016;5:31–34.
  • Zhang G, Chou K. Study on relation between viscosity and electrical conductivity of aluminosilicate melts. Ironmak Steelmak. 2011;38(2):149–154. https://doi.org/10.1179/030192310X12816231892585.
  • Zhang G, et al. Relation between viscosity and electrical conductivity of silicate melts. Metall Mater Trans B. 2011;42(2):261–264. [cited 2021 Dec 10]. Available from: https://link.springer.com/article/10.1007%2Fs11663-011-9484-7.
  • Wang Y, Wang L, Chou KC. Estimating electrical conductivities of CaO-MgO-Al2O3-SiO2 using ion-oxygen parameter. High Temp Mater Processes. 2016;35(3):253–259. [cited 2021 Dec 10]. Available from: https://doi.org/10.1515/htmp-2014-0195.
  • Li W, et al. Relation between electrical conductivity and viscosity of CaO–SiO2–Al2O3–MgO system. ISIJ Int. 2016;56(2):205–209. [cited 2021 Dec 10]. Available from: https://doi.org/10.2355/isijinternational.ISIJINT-2015-502.
  • Zhang GH, Xue QG, Chou KC. Study on relation between viscosity and electrical conductivity of aluminosilicate melts. Ironmak Steelmak. 2011;38(2):149–154. [cited 2021 Dec 10]. Available from: https://doi.org/10.1179/030192310X12816231892585.
  • Xu RZ, et al. Effect of BaO and Na2O on the viscosity and structure of blast furnace slag. Ironmak Steelmak. 2020;47(2):168–172. [cited 2021 Nov 25]. Available from: https://doi.org/10.1080/03019233.2018.1498761.
  • Zhang H, et al. Influence of TiO2 on the viscosity of the molten slag and the confirmation of the acid–base property on TiO2. Ironmak Steelmak. 2021;48(4):387–392. [cited 2021 Nov 25]. Available from: https://doi.org/10.1080/03019233.2020.1793289.
  • Kekkonen M, Oghbasilasie H, Louhenkilpi S. Viscosity models for molten slags. Aalto University; 2012.
  • Gabdullin T, et al. Physical and chemical properties of manganese slags. Publishing Science, Alma-Ata; 1984.
  • Institute of Ferrous Metallurgy of NAS of Ukraine (Stepanenko, D.O., Togobytska, D.M., Khamkhotko, A.F.). Method of research of phase transformations of electrolyte melts. Ukraine Patent 107387, IPC (2015, 01) G01N 25/12 (2006.01); 2014.
  • Lisova L, et al. Thermodynamics of interactions and physical properties of slags of 30CaF2/30CaO/30Al2O3 (SiO2, MgO) system at electroslag remelting. Electrometall Today. 2020;1:8–13. [cited 2021 Nov 25]. Available from: https://doi.org/10.37434/sem2020.01.01.
  • Stovpchenko G, et al. Investigation of manufacturability and effectiveness of the new slag for electroslag remelting. Electrometall Today. 2020;3:11–17. [cited 2021 Nov 25]. Available from: Available from: https://doi.org/10.37434/sem2020.03.01.
  • Povolotsky D, et al. Physicochemical properties of melts of the CaO system - Al2O3 - CaF2. Izv VysshUchebn Zaved Chern Metall. 1970;12:8–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.