Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 6
204
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fundamentals of reduction of CaO·Fe2O3 in CO/CO2 gas at 1000°C

, , , , , , & show all
Pages 621-629 | Received 24 Aug 2022, Accepted 21 Oct 2022, Published online: 09 Nov 2022

References

  • Bristow NJ, Waters AG. Role of SFCA in promoting high-temperature reduction properties of iron ore sinters. Trans Inst Min Metall. 1991;100:C1–C10.
  • Loo CE, Wan KT, Howes VR. Mechanical properties of natural and synthetic mineral phases in sinters having varying reduction degradation indices. Ironmak Steelmak. 1988;15(6):279–285.
  • Shigaki I, Sawada M, Gennai N. Increase in Low-temperature reduction of iron ore sinter due to hematite-alumina solid solution and columnar calcium ferrite. Trans Iron Steel Inst Jpn. 1986;26:503–511. doi:10.2355/isijinternational1966.26.503.
  • Ikeda T, Inoue K, Uenaka T, et al. Mineral composition of dolomite-fluxed pellets and its effect on the contraction during reduction up to 1100°C. Tetsu-to-Hagané. 1981;67:726–735.
  • Inoue K, Ikeda T. The solid solution state and the crystal structure of calcium ferrite formed in lime-fluxed iron ores. Tetsu-to-Hagané. 1982;68(15):2190–2199. doi:10.2355/tetsutohagane1955.68.15_2190.
  • Patrick TRC, Pownceby MI. Stability of silico-ferrite of calcium and aluminum (SFCA) in air-solid solution limits between 1240°C and 1390°C and phase relationships within the Fe2O3-CaO-Al2O3-SiO2 (FCAS) system. Metall Mater Trans B. 2002;33:79–89. doi:10.1007/s11663-002-0088-0.
  • Sasaki M, Hida Y. Consideration on the properties of sinter from the point of sintering reaction. Tetsu-to-Hagané. 1982;68(6):563–571. doi:10.2355/tetsutohagane1955.68.6_563.
  • Mumme WG, Clout JMF, Gable RW. The crystal structure of SFCA-I, CA3.18FE14.663 + AL1.34FE0.822 + O28, a homologue of the aenigmatite structure type, and new crystal structure refinements of beta-CFF, CA2.99FE14.303 + FE0.552 + O25 and MG-free SFCA, CA2.45FE9.043 + AL1.74FE0.162 + SI0.6O20. Neues Jahrb Mineral Abh 1998;173(1):93–117.
  • Scarlett NVY, Pownceby MI, Madsen IC, et al. Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter. Metall Mater Trans B. 2004;35(5):929–936. doi:10.1007/s11663-004-0087-4.
  • Pownceby MI, Clout JMF. Importance of fine ore chemical composition and high temperature phase relations: applications to iron ore sintering and pelletising. Trans Inst Min Metall C. 2003;112(1):44–51. doi:10.1179/037195503225011402.
  • Webster NAS, Pownceby MI, Madsen IC. Silico-ferrite of calcium and aluminum (SFCA) iron Ore sinter bonding phases: New insights into their formation during heating and cooling. Metall Mater Trans B. 2012;43(6):1344–1357. doi:10.1007/s11663-012-9740-5.
  • Li LS, Liu JB, Wu XR, et al. Influence of Al2O3 on equilibrium sinter phase in N2 atmosphere. ISIJ Int. 2010;50(2):327–329. doi:10.2355/isijinternational.50.327.
  • Pownceby MI, Patrick T. Stability of SFC (silico-ferrite of calcium): solid solution limits, thermal stability and selected phase relationships within the Fe2O3-CaO-SiO2 (FCS) system. Eur J Mineral. 2000;12(2):455–468. doi:10.1127/0935-1221/2000/0012-0455.
  • Hu CQ, Long LG, Zhao K. Influence mechanism of Al2O3/MgO interaction on the formation of composite calcium ferrite. China Metall. 2017;27:5–10.
  • Fan XH, Meng J, Chen XL. Influence factors of calcium ferrite formation in iron ore sintering. J Central South Univ. 2008;39(6):1125–1131.
  • Yin JQ, Lv XW, Xiang SL, et al. Influence of CaO source on the formation behavior of calcium ferrite in solid state. ISIJ Int. 2013;53(9):1571–1579. doi:10.2355/isijinternational.53.1571.
  • Noguchi D, Ohno KI, Maeda T, et al. Kinetics of reduction step of wustite to iron of hematite and quaternary calcium ferrite mixtures. ISIJ Int. 2013;53(8):1350–1357. doi:10.2355/isijinternational.53.1350.
  • Li G, Lv XW, Zhou XG, et al. Non-isothermal carbothermic reduction kinetics of calcium ferrite. Appl Energy. 2020;262:23–33. doi:10.1007/978-3-030-36628-5_3.
  • Ding CY, Lv XW, Gang L, et al. Isothermal reduction of powdery 2CaO·Fe2O3 and CaO·Fe2O3 under H2 atmosphere. Int J Hydrog Energy. 2018;43(1):24–36. doi:10.1016/j.ijhydene.2017.11.075.
  • Ding CY, Lv XW, Xuan SW, et al. Powder reduction kinetics of dicalcium ferrite, calcium ferrite, and hematite: measurement and modeling. Adv Powder Technol. 2017;28:2503–2513.
  • Ding CY. Study on crystallization and reduction behavior of compound calcium ferrite. [PhD. dissertation]. Chongqing University, Chongqing, China; 2018.
  • Edstrom JO. Some chemical reactions involved in pelletizing and iron ore reduction. Saint Lucia. Australia.1958;142:401–466.
  • Ganguly S. A study of gaseous reduction of calcium ferrites. School of Chemical Engineering; 1991.St.Lucia,Australia.
  • Li K. Coke oven and raw materials committee of the iron and steel division: V.19. The Institute. 1960; 153–169
  • Barin I.Thermochemical Data of Pure Substances. Beijing: Science Press; 2003.
  • Jiang X, Long F, Wang L. Theoretical yield of metallic Fe by COG in a shaft furnace in the case of O2 pyrolysis. ISIJ Int. 2021;61(1):129–137. doi:10.2355/isijinternational.ISIJINT-2020-303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.