Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 10: STEEL WORLD ISSUE
240
Views
0
CrossRef citations to date
0
Altmetric
Articles

Viscosity and desulphurisation behaviour of CaO–SiO2–MgO–Al2O3–BaO–MnO slag

, &
Pages 1420-1426 | Received 21 Feb 2023, Accepted 28 Feb 2023, Published online: 31 Mar 2023

References

  • Wang JJ, An SL, Chai YF, et al. Influence of unburned pulverized coal on the viscosity of blast furnace slag. Ironmak Steelmak. 2022. DOI:10.1080/03019233.2022.2091309
  • Li TL, Zhao CG, Sun CY, et al. Roles of MgO and Al2O3 in viscous and structural behavior of blast furnace primary slag with C/S = 1.4. Metall Mater Trans B. 2020;51B:2724–2734.
  • Gao K, Jiao XJ, Zhang JL, et al. Thermodynamic properties and viscosities of high-titanium slags. ISIJ Int. 2020;20:1902–1908.
  • Xu CY, Wang C, Xu RZ, et al. Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags. international journal of minerals. Metall Mater. 2021;28:797–803.
  • Yang D, Zhou HH, Yang J, et al. Influence of TiO2 on viscosity, phase composition and structure of chromium-containing high-titanium blast furnace slag. J Mater Res Technol. 2021;12:1615–1622.
  • Liu WG, Chen JS, Chen YB, et al. Viscosity and structure evolution of bearing-BaO slag melt with the low CaO/SiO2 mass ratio of 0.7. J Am Ceram Soc. 2022;105:842–852.
  • Du YS, Ma J, Shi Y, et al. Crystallization characteristics and corrosion properties of slag glass-ceramic prepared from blast furnace slag containing rare earth. J Non-Cryst Solids. 2020;532:119880.
  • Yan ZM, Lv XW, Pang ZD, et al. Transition of blast furnace slag from silicate based to aluminate based: sulfide capacity. Metall Mater Trans B. 2017;48B:2608–2614.
  • Yan ZM, Lv XW, Liang D, et al. Transition of blast furnace slag from silicates-based to aluminates-based: viscosity. Metall Mater Trans B. 2017;48B:1092–1099.
  • Liu WG, Zuo HB. Effect of MnO and substituting CaO with BaO on the desulfurization ability of blast furnace slag. Metall Mater Trans B. 2021;52B:2275–2282.
  • Liu WG, Zuo HB. Effect of MnO and CaO substitution for BaO on the viscosity and structure of CaO-SiO2-MgO-Al2O3-BaO-MnO slag. J Non-Cryst Solids. 2021;567:120940.
  • Pang ZD, Lv XW, Jiang YY, et al. Blast furnace ironmaking process with super-high TiO2 in the slag: viscosity and melting properties of the slag. Metall Mater Trans B. 2020;51B:722–731.
  • Tang X, Xu CS. Sulphur distribution and carbon-saturated between CaO-SiO2-TiO2-Al2O3-MgO and carbon-saturated iron at 1773K. ISIJ Int. 1995;35(4):367–371.
  • Park JH, Park GH. Sulfide capacity of CaO-SiO2-MnO-Al2O3-MgO slags at 1873K. ISIJ Int. 2012;52(5):1570–1577.
  • Xing XD, Pang ZG, Mo C, et al. Effect of MgO and BaO on viscosity and structure of blast furnace slag. J Non-Cryst Solids. 2020;530:119801.
  • Sadaf S, Lei J, Zhuang HX, et al. Effective mechanism of BaO on the structure and fluid behavior of CaO-SiO2-B2O3-based melts. Metall Res Technol. 2022;119:208. DOI:10.1051/metal/2022020.
  • Wang ZJ, Sohn I. Effect of substituting CaO with BaO on the viscosity and structure of CaO-BaO-SiO2-MgO-Al2O3 slags. J Am Ceram Soc. 2018;101:4285–4296.
  • Piao ZL, Zhu LG, Wang XJ, et al. Effect of BaO on the viscosity and structure of fluorine-free calcium silicate-based mold flux. J Non-Cryst Solid. 2020;542:120111.
  • Liu WG, Chen JS, Pang ZG, et al. Investigation on the structure and viscosity of BaO-bearing slag melt through molecular dynamics simulation, Raman and 27Al MAS NMR spectra. J Mol Liq. 2022;359:119342.
  • Feng C, Tang J, Gao LH, et al. Effects of CaO/SiO2 on viscous behaviors and structure of CaO-SiO2-11.00wt%MgO-11.00wt%Al2O3-43.00wt%TiO2 slag systems. ISIJ Int. 2019;59:31–38.
  • Fincham CJB, Richardson FD. The behaviour of sulphur in silicate and aluminate melts. Proc R Soc. 1954;A223:40–62.
  • Zhang GH, Chou KC, Pay U. Estimation of sulfide capacities of multicomponent slags using optical basicity. ISIJ Int. 2013;53(5):761–767.
  • Young RW, Duffy JA, Hassall GJ, et al. Use of optical basicity concept for determining phosphorus and sulphur slag-metal partitions. Ironmak Steelmak. 1992;19(3):201–219.
  • Hao X, Wang XH. A new sulfide capacity model for CaO-Al2O3-SiO2-MgO slags based on corrected optical basicity. Steel Res Int 2016;87(3):359–363.
  • Sosinsky DJ, Sommerville ID. The composition and temperature dependence of the sulfide capacity of metallurgical slags. Metall Mater Trans B. 1986;17B:331–337.
  • Liu WG, Chen YB, Wang JS, et al. Sulfide capacity of CaO–SiO2–MgO–Al2O3–BaO–Na2O slag at 1773K. J Sustain Metall. 2021;7:1167–1177.
  • Gao HH, Liu QC, Bian LT. Effect of composition on desulfurization capacity in the CaO-SiO2-Al2O3-MgO-CaF2-BaO system. Metall Mater Trans B. 2012;43B:229–232.
  • Park Y, Min DJ. Sulfide capacity of CaO-SiO2-FeO-Al2O3-MgOsatd. slag. ISIJ Int. 2016;56(4):520–526.
  • Shankar A. Sulphur partition between hot metal and high alumina blast furnace slag. Ironmak Steelmak. 2006;33(5):413–418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.