278
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Multi-objective optimization in the vibration characteristics of a hydraulic steering system using a conservative and feasible response surface method

, &
Pages 465-483 | Received 28 May 2018, Accepted 06 Mar 2019, Published online: 14 May 2019

References

  • Atthaphon, A., S. Masahiko, T. Yasutada, and K. Masahiro. 2018. “Hybrid Surrogate-Model-Based Multi-fidelity Efficient Global Optimization Applied to Helicopter Blade Design.” Engineering Optimization 50 (6): 1016–1040. doi: 10.1080/0305215X.2017.1367391
  • Chen, S. M., D. F. Wang, and J. M. Zan. 2012. “Brake Judder Analysis using a Car Rigid–Flexible Coupling Model.” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226 (3): 348–361.
  • Deb, K., and R. B. Agrawal. 1995. “Simulated Binary Crossover for Continuous Search Space.” Complex Systems 9 (2): 115–148.
  • Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. “A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6 (2): 182–197. doi: 10.1109/4235.996017
  • Efroymson, M. 1960. Multiple Regression Analysis – Mathematical Methods for Digital Computers. New York: Wiley.
  • Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. Upper Saddle River, NJ: Prentice Hall.
  • Hwang, I. J., and G. J. Park. 2005. “System Mode and Sensitivity Analysis for Brake Judder Reduction.” Transactions of the Korean Society of Automotive Engineers 13 (6): 142–153.
  • Kim, S., S. Cho, and J. Lee. 2013. “A Study for High Speed Judder Evaluation on Brake System.” Transactions of the Korean Society for Noise and Vibration Engineering 23 (6): 485–494. doi: 10.5050/KSNVE.2013.23.6.485
  • Kim, C., and K. K. Choi. 2008. “Reliability-Based Design Optimization using Response Surface Method with Prediction Interval Estimation.” Journal of Mechanical Design 130 (12): 121401 (12 pages). doi: 10.1115/1.2988476
  • Kim, M., H. Jeong, and W. Yoo. 1996. “Sensitivity Analysis of Chassis System to Improve Shimmy and Brake Judder Vibration on Steering Wheel.” SAE Technical Paper 960734. doi:10.4271/960734
  • Kim, S. W., K. Kang, K. Yoon, and D. H. Choi. 2016. “Design Optimization of an Angular Contact Ball Bearing for the Main Shaft of a Grinder.” Mechanism and Machine Theory 104: 287–302. doi: 10.1016/j.mechmachtheory.2016.06.006
  • Korta, J. A., and D. Mundo. 2017. “Multi-objective Micro-geometry Optimization of Gear Tooth Supported by Response Surface Methodology.” Mechanism and Machine Theory 109: 278–295. doi: 10.1016/j.mechmachtheory.2016.11.015
  • Lee, J., H. Jeong, D. H. Choi, V. Volovoi, and D. Mavris. 2007. “An Enhancement of Constraint Feasibility in BPN Based Approximate Optimization.” Computer Methods in Applied Mechanics and Engineering 196 (17–20): 2147–2160. doi: 10.1016/j.cma.2006.11.005
  • Lee, S. J., J. I. Park, S. H. Lee, J. K. Lee, and J. Lee. 2012. “Reduction in the Nitrogen Oxide and Soot Emissions in a Diesel Engine Combustion System using an Approximate Optimization Method.” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226 (12): 1707–1718.
  • Lee, J., and C. Y. Song. 2011. “Role of Conservative Moving Least Squares Methods in Reliability Based Design Optimization: A Mathematical Foundation.” Journal of Mechanical Design 133 (12): 121005 (12 pages). doi: 10.1115/1.4005235
  • Liu, B., R. T. Haftka, and L. T. Watson. 2004. “Global-Local Structural Optimization using Response Surfaces of Local Optimization Margins.” Structural and Multidisciplinary Optimization 27 (5): 352–359. doi: 10.1007/s00158-004-0393-0
  • Ma, Y. Z., H. S. Li, and W. X. Yao. 2018. “Reliability-Based Design Optimization using a Generalized Subset Simulation Method and Posterior Approximation.” Engineering Optimization 50 (5): 733–748. doi: 10.1080/0305215X.2017.1341500
  • MSC. Software. 2010. MSC.ADAMS User’s Manual.
  • Myers, R. H., and D. C. Montgomery. 1995. Response Surface Methodology: Process and Product Optimization using Designed Experiments. New York: Wiley.
  • Sacks, J., S. B. Schiller, and W. J. Welch. 1989. “Designs for Computer Experiments.” Technometrics 31 (1): 41–47. doi: 10.1080/00401706.1989.10488474
  • Song, C. Y., H. Y. Choi, and J. Lee. 2014. “Approximate Multi-objective Optimization using Conservative and Feasible Moving Least Squares Method: Application to Automotive Knuckle Design.” Structural and Multidisciplinary Optimization 49 (5): 851–861. doi: 10.1007/s00158-013-1009-3
  • Song, C. Y., and J. Lee. 2009. “Strength Design of a Knuckle Component using Moving Least-Squares Response-Surface-Based Approximate Optimization Methods.” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223 (8): 1019–1032.
  • Song, C. Y., and J. Lee. 2011a. “A Realization of Constraint Feasibility in a Moving Least Squares Response Surface Based Approximate Optimization.” Computational Optimization and Applications 50 (1): 163–188. doi: 10.1007/s10589-009-9312-z
  • Song, C. Y., and J. Lee. 2011b. “Reliability Based Design Optimization of Knuckle Component using Conservative Method of Moving Least Squares Meta-models.” Probabilistic Engineering Mechanics 26 (2): 364–379 . doi: 10.1016/j.probengmech.2010.09.004
  • Utyuzhnikov, S., J. Maginot, and M. Guenov. 2008. “Local Pareto Approximation for Multi-objective Optimization.” Engineering Optimization 40 (9): 821–847. doi: 10.1080/03052150802086714

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.