1,668
Views
17
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Evaluation of a novel strain of infectious bronchitis virus emerged as a result of spike gene recombination between two highly diverged parent strains

, , , , &
Pages 249-257 | Received 10 Jan 2014, Accepted 23 Mar 2014, Published online: 12 May 2014

References

  • Armesto, M., Cavanagh, D. & Britton, P. (2009). The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity. PLoS, 4, e7384.
  • Banner, L.R. & Lai, M.M. (1991). Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology, 185, 441–445. 10.1016/0042-6822(91)90795-D
  • Brooks, J.E., Rainer, A.C., Parr, R.L., Woolcock, P.R., Hoerr, F. & Collisson, E.W. (2004). Comparisons of envelope through 5B sequences of infectious bronchitis coronaviruses indicates recombination occurs in the envelope and membrane genes. Virus Research, 100, 191–198. 10.1016/j.virusres.2003.11.016
  • Cavanagh, D. (1983). Coronavirus IBV: structural characterization of the spike protein. Journal of General Virology, 64, 2577–2583. 10.1099/0022-1317-64-12-2577
  • Cavanagh, D., Davis, P.J., Cook, J.K., Li, D., Kant, A. & Koch, G. (1992). Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathology, 21, 33–43. 10.1080/03079459208418816
  • Cavanagh, D., Davis, P.J., Darbyshire, J.H. & Peters, R.W. (1986). Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. Journal of General Virology, 67, 1435–1442. 10.1099/0022-1317-67-7-1435
  • Cavanagh, D., Davis, P.J. & Mockett, A.P. (1988). Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Research, 11, 141–150. 10.1016/0168-1702(88)90039-1
  • Chen, H.W., Huang, Y.P. & Wang, C.H. (2009). Identification of Taiwan and China-like recombinant avian infectious bronchitis viruses in Taiwan. Virus Research, 140, 121–129. 10.1016/j.virusres.2008.11.012
  • Davidson, I. & Silva, R. (2008). Creation of diversity in the animal virus world by inter-species and intra-species recombinations: lessons learned from poultry viruses. Virus Genes, 36, 1–9. 10.1007/s11262-007-0165-1
  • Dolz, R., Pujols, J., Ordóñez, G., Porta, R. & Majó, N. (2006). Antigenic and molecular characterization of isolates of the Italy 02 infectious bronchitis virus genotype. Avian Pathology, 35, 77–85 10.1080/03079450600597295
  • Dolz, R., Pujols, J., Ordóñez, G., Porta, R. & Majó, N. (2008). Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology, 374, 50–59. 10.1016/j.virol.2007.12.020
  • Enjuanes, L., Sola, I., Zuniga, S. & Moreno, J.L. (2007). Coronavirus RNA synthesis: transcription. In V. Thiel (Ed.). Coronaviruses: Molecular and Cellular Biology (pp. 81–107). Norfolk: Caister Academic Press.
  • Estevez, C., Villegas, P. & El-Attrache, J. (2003). A recombination event, induced in ovo, between a low passage infectious bronchitis virus field isolate and a highly embryo adapted vaccine strain. Avian Diseases, 47, 1282–1290. 10.1637/5919
  • Fang, S.G., Shen, S., Tay, F.P. & Liu, D.X. (2005). Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells. Biochemical and Biophysical Research Communications, 336, 417–423. 10.1016/j.bbrc.2005.08.105
  • Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J. & de Groot, R.J. (1998). Feline coronavirus type II strains 79–1683 and 79–1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. The Journal of Virology, 72, 4508–4514.
  • Hewson, K.A., Browning, G.F., Devlin, J.M., Ignjatovic, J. & Noormohammadi, A.H. (2010). Application of high-resolution melt curve analysis for classification of infectious bronchitis viruses in field specimens. Australian Veterinary Journal, 88, 408–413. 10.1111/j.1751-0813.2010.00622.x
  • Hewson, K.A., Noormohammadi, A.H., Devlin, J.M., Mardani, K. & Ignjatovic, J. (2009). Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Archives of Virology, 154, 649–660. 10.1007/s00705-009-0357-1
  • Ignjatovic, J., Ashton, D.F., Reece, R., Scott, P. & Hooper, P. (2002). Pathogenicity of Australian strains of avian infectious bronchitis virus. Journal of Comparative Pathology, 126, 115–123. 10.1053/jcpa.2001.0528
  • Ignjatovic, J., Gould, G. & Sapats, S. (2006). Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emerging strains. Archives of Virology, 151, 1567–1585. 10.1007/s00705-006-0726-y
  • Ignjatovic, J., Sapats, S.I. & Ashton, F. (1997). A long-term study of Australian infectious bronchitis viruses indicates a major antigenic change. Avian Pathology, 26, 535–553. 10.1080/03079459708419233
  • Jackwood, M.W., Boynton, T.O., Hilt, D.A., McKinley, E.T., Kissinger, J.C., Paterson, A.H., Robertson, J., Lemke, C., McCall, A.W., Williams, S.M., Jackwood, J.W. & Byrd, L.A. (2010). Emergence of a group 3 coronavirus through recombination. Virology, 398, 98–108. 10.1016/j.virol.2009.11.044
  • Jackwood, M.W., Hilt, D.A., Callison, S.A., Lee, C.W., Plaza, H. & Wade, E. (2001). Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Diseases, 45, 366–372. 10.2307/1592976
  • Jia, W., Karaca, K., Parrish, C.R. & Naqi, S.A. (1995). A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Archives of Virology, 140, 259–271. 10.1007/BF01309861
  • Kant, A., Koch, G., van Roozelaar, D.J., Kusters, J.G., Poelwijk, F.A.J. & van der Zeijst, B.A. (1992). Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. Journal of General Virology, 73, 591–596. 10.1099/0022-1317-73-3-591
  • Kottier, S.A., Cavanagh, D. & Britton, P. (1995). Experimental evidence of recombination in coronavirus infectious bronchitis virus. Virology, 213, 569–580. 10.1006/viro.1995.0029
  • Kusters, J.G., Jager, E.J., Niesters, H.G. & van der Zeijst, B.A. (1990). Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine, 8, 605–608. 10.1016/0264-410X(90)90018-H
  • Lee, C.W. & Jackwood, M.W. (2000). Evidence of genetic diversity generated by recombination among avian coronavirus IBV. Archives of Virology, 145, 2135–2148. 10.1007/s007050070044
  • Lee, C.W. & Jackwood, M.W. (2001). Spike gene analysis of the DE072 strain of infectious bronchitis virus: origin and evolution. Virus Genes, 22, 85–91. 10.1023/A:1008138520451
  • Lole, K.S., Bollinger, R.C., Paranjape, R.S., Gadkari, D., Kulkarni, S.S., Novak, N.G., Ingersoll, R., Sheppard, H.W. & Ray, S.C.. (1999). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. The Journal of Virology, 73, 152–160.
  • Mardani, K., Browning, G.F., Ignjatovic, J. & Noormohammadi, A.H. (2006a). Rapid differentiation of current infectious bronchitis virus vaccine strains and field isolates in Australia. Australian Veterinary Journal, 84, 59–62. 10.1111/j.1751-0813.2006.tb13130.x
  • Mardani, K., Noormohammadi, A.H., Hooper, P., Ignjatovic, J. & Browning, G.F. (2008). Infectious bronchitis viruses with a novel genomic organization. The Journal of Virology, 82, 2013–2024. 10.1128/JVI.01694-07
  • Mardani, K., Noormohammadi, A.H., Ignjatovic, J. & Browning, G.F. (2006b). Typing infectious bronchitis virus strains using reverse transcription-polymerase chain reaction and restriction fragment length polymorphism analysis to compare the 3′ 7.5 kb of their genomes. Avian Pathology, 35, 63–69. 10.1080/03079450500465817
  • Mardani, K., Noormohammadi, A.H., Ignjatovic, J. & Browning, G.F. (2010). Naturally occurring recombination between distant strains of infectious bronchitis virus. Archives of Virology 155, 1581–1586.
  • Masters, P.S., Margniorosch, K., Murphy, F.A. & Shatkin, A.J. (1999). Reverse genetics of the largest RNA viruses. In K. Maramorosch & A.J. Shatkin (Eds.). Advances in Virus Research (pp. 245–264). San Diago, CA: Academic Press.
  • Mills, D.R., Dobkin, C. & Kramer, F.R. (1978). Template-determined, variable rate of RNA chain elongation. Cell, 15, 541–550. 10.1016/0092-8674(78)90022-3
  • Nagy, P.D., Carpenter, C.D. & Simon, A.E. (1997). A novel 3′-end repair mechanism in an RNA virus. Proceedings of the National Academy of Sciences 94, 1113–1118. 10.1073/pnas.94.4.1113
  • Pyrc, K., Dijkman, R., Deng, L., Jebbink, M.F., Ross, H.A., Berkhout, B. & van der Hoek, L. (2006). Mosaic structure of human coronavirus NL63, one thousand years of evolution. Journal of Molecular Biology, 364, 964–973. 10.1016/j.jmb.2006.09.074
  • Reed, L.J. & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27, 493–497.
  • Sapats, S.I., Ashton, F., Wright, P.J. & Ignjatovic, J. (1996). Sequence analysis of the S1 glycoprotein of infectious bronchitis viruses: identification of a novel genotypic group in Australia. Journal of General Virology, 77, 413–418. 10.1099/0022-1317-77-3-413
  • Sawicki, S.G. & Sawicki, D.L. (1995). Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. In I.R. Cohen, A. Lajtha, R. Paoletti, & J.D. Lambris (Ed.). Advances in Experimental Medicine and Biology (pp. 499–506). New York: Plenum Press.
  • Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Rozanov, M., Spaan, W.J. & Gorbalenya, A.E. (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of Molecular Biology, 331, 991–1004. 10.1016/S0022-2836(03)00865-9
  • Stavrinides, J. & Guttman, D.S. (2004). Mosaic evolution of the severe acute respiratory syndrome coronavirus. The Journal of Virology, 78, 76–82. 10.1128/JVI.78.1.76-82.2004
  • Vijgen, L., Keyaerts, E. & Van Ranst, M. (2007). Molecular evolution of group 2 coronaviruses. In V. Thiel (Ed.). Coronaviruses: Molecular and Cellular Biology (pp. 143–158). Norfolk: Caister Academic Press.
  • Wadey, C.N. & Faragher, J.T. (1981). Australian infectious bronchitis viruses: identification of nine subtypes by a neutralisation test. Research in Veterinary Science, 30, 70–74.
  • Wang, C.H. & Huang, Y.C. (2000). Relationship between serotypes and genotypes based on the hypervariable region of the S1 gene of infectious bronchitis virus. Archives of Virology, 145, 291–300. 10.1007/s007050050024
  • Wang, L., Junker, D. & Collisson, E.W. (1993). Evidence of natural recombination within the S1 genes of infectious bronchitis virus. Virology, 192, 710–716. 10.1006/viro.1993.1093
  • Wentworth, D.E. & Holmes, K.V. (2007). Coronavirus binding and entry. In V. Thiel (Ed.). Coronaviruses: Molecular and Cellular Biology (pp. 3–32). Norfolk: Caister Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.