6,541
Views
93
CrossRef citations to date
0
Altmetric
Review Articles

Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry

, &
Pages 339-351 | Received 24 Jan 2018, Accepted 04 Apr 2018, Published online: 02 May 2018

References

  • Abriouel, H., Franz, C., Omar, N.B. & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35, 201–232. doi: 10.1111/j.1574-6976.2010.00244.x
  • Aliakbarpour, H.R., Chamani, M., Rahimi, G., Sadeghi, A.A. & Qujeq, D. (2012). The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian-Australasian Journal of Animal Sciences, 25, 1285–1293. doi: 10.5713/ajas.2012.12110
  • Anadón, A., Rosa Martínez-Larrañaga, M. & Aranzazu Martínez, M. (2006). Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regulatory Toxicology and Pharmacology, 45, 91–95. doi: 10.1016/j.yrtph.2006.02.004
  • Andersson, D.I., Hughes, D. & Kubicek-Sutherland, J.Z. (2016). Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resistance Updates, 26, 43–57. doi: 10.1016/j.drup.2016.04.002
  • Apajalahti, J., Kettunen, A. & Graham, H. (2004). Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poultry Science Journal, 60, 223–232. doi: 10.1079/WPS20040017
  • Apajalahti, J. & Vienola, K. (2016). Interaction between chicken intestinal microbiota and protein digestion. Animal Feed Science and Technology, 221, 323–330. doi: 10.1016/j.anifeedsci.2016.05.004
  • Barbosa, T., Serra, C., La Ragione, R., Woodward, M. & Henriques, A. (2005). Screening for Bacillus isolates in the broiler gastrointestinal tract. Applied and Environmental Microbiology, 71, 968–978. doi: 10.1128/AEM.71.2.968-978.2005
  • Belenguer, A., Duncan, S.H., Calder, A.G., Holtrop, G., Louis, P., Lobley, G.E. & Flint, H.J. (2006). Two routes of metabolic cross-feeding between bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Applied and Environmental Microbiology, 72, 3593–3599. doi: 10.1128/AEM.72.5.3593-3599.2006
  • Cartman, S.T., La Ragione, R.M. & Woodward, M.J. (2008). Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Applied and Environmental Microbiology, 74, 5254-5258. doi: 10.1128/AEM.00580-08
  • CDC. (2013a). Antibiotic resistance threats in the United States.
  • CDC. (2013b). CDC telebriefing on today’s drug-resistant health threats.
  • CDC. (2017). Foodborne germs and illnesses.
  • Chaiyawan, N., Taveeteptaikul, P., Wannissorn, B., Ruengsomwong, S., Klungsupya, P., Buaban, W. & Itsaranuwat, P. (2010). Characterization and probiotic properties of Bacillus strains isolated from broiler. Thai Journal of Veterinary Medicine, 40, 207–214.
  • Chan, W.C., Lian, L.-Y., Bycroft, B.W. & Roberts, G.C.K. (1989). Confirmation of the structure of nisin by complete 1H n.m.r. resonance assignment in aqueous and dimethyl sulphoxide solution. Journal of the Chemical Society, Perkin Transactions, 1, 2359–2367. doi: 10.1039/p19890002359
  • Chaveerach, P., Keuzenkamp, D.A., Lipman, L.J.A. & Van Knapen, F. (2004). Effect of organic acids in drinking water for young broilers on Campylobacter infection, volatile fatty acid production, gut microflora and histological cell changes. Poultry Science, 83, 330–334. doi: 10.1093/ps/83.3.330
  • Chichlowski, M., Croom, J., McBride, B.W., Havenstein, G.B. & Koci, M.D. (2007). Metabolic and physiological impact of probiotics or direct-fed-microbials on poultry: a brief review of current knowledge. International Journal of Poultry Science, 6, 694–704. doi: 10.3923/ijps.2007.694.704
  • Chimerel, C., Murray, A.J., Oldewurtel, E.R., Summers, D.K. & Keyser, U.F. (2013). The effect of bacterial signal indole on the electrical properties of lipid membranes. ChemPhysChem, 14, 417–423. doi: 10.1002/cphc.201200793
  • Choi, J.H., Kim, G.B. & Cha, C.J. (2014). Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens. Poultry Science, 93, 1942–1950. doi: 10.3382/ps.2014-03974
  • Clausen, M.R. & Mortensen, P.B. (1992). Fecal ammonia in patients with adenomatous polyps and cancer of the colon. Nutrition and Cancer, 18, 175–180. doi: 10.1080/01635589209514217
  • Deleu, M., Paquot, M. & Nylander, T. (2008). Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophysical Journal, 94, 2667–2679. doi: 10.1529/biophysj.107.114090
  • Depeint, F., Tzortzis, G., Vulevic, J., I’Anson, K. & Gibson, G.R. (2008). Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. The American Journal of Clinical Nutrition, 87, 785–791. doi: 10.1093/ajcn/87.3.785
  • Diarra, M.S., Silversides, F.G., Diarrassouba, F., Pritchard, J., Masson, L., Brousseau, R., Bonnet, C., Delaquis, P., Bach, S., Skura, B.J. & Topp, E. (2007). Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Eschericia coli isolates. Applied and Environmental Microbiology, 73, 6566–6576. doi: 10.1128/AEM.01086-07
  • Dibner, J.J. & Richards, J.D. (2005). Antibiotic growth promoters in agriculture: history and mode of action. Poultry Science, 84, 634–643. doi: 10.1093/ps/84.4.634
  • Ducatelle, R., Eeckhaut, V., Haesebrouck, F. & Van Immerseel, F. (2014). A review on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives. Animal, 9, 43–48. doi: 10.1017/S1751731114002584
  • Elliot, S.D. & Barnes, E.M. (1959). Changes in serological type and antibiotic resistance on Lancefield group D streptococci in chickens receiving dietary chlortetracycline. Journal of General Microbiology, 20, 426–433. doi: 10.1099/00221287-20-2-426
  • European Food Safety Authority. (2014). Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition. EFSA Journal, 12, 3665.
  • Fanzani, A., Conraads, V.M., Penna, F. & Martinet, W. (2012). Molecular and cellular mechanisms of skeletal muscle atrophy: an update. Journal of Cachexia, Sarcopenia and Muscle, 3, 163–179. doi: 10.1007/s13539-012-0074-6
  • Fernandes, P.A.V., Arruda, I.R., Santos, A.F.A.B., Araújo, A.A., Maior, A.M.S. & Ximenes, E.A. (2007). Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Brazilian Journal of Microbiology, 38, 704–709. doi: 10.1590/S1517-83822007000400022
  • Fritts, C.A., Kersey, J.H., Motl, M.A., Kroger, E.C., Yan, F., Si, J., Jiang, Q., Campos, M.M., Waldroup, A.L. & Waldroup, P.W. (2000). Bacillus subtilis C-3102 (calsporin) improves live performance and microbiological status of broiler chickens. The Journal of Applied Poultry Research, 9, 149–155. doi: 10.1093/japr/9.2.149
  • Fuchs, S.W., Jaskolla, T.W., Bochmann, S., Kötter, P., Wichelhaus, T., Karas, M., Stein, T. & Entian, K.-D. (2011). Entianin, a novel subtilin-like antibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity. Applied and Environmental Microbiology, 77, 1698–1707. doi: 10.1128/AEM.01962-10
  • Gadde, U., Kim, W.H., Oh, S.T. & Lillehoj, H.S. (2017a). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Animal Health Research Reviews, 18, 26–45. doi: 10.1017/S1466252316000207
  • Gadde, U., Oh, S.T., Lee, Y.S., Davis, E., Zimmerman, N., Rehberger, T. & Lillehoj, H.S. (2017b). The effects of direct-fed microbial supplementation, as an alternative to antibiotics, on growth performance, intestinal immune status, and epithelial barrier gene expression in broiler chickens. Probiotics and Antimicrobial Proteins, 9, 1–9. doi: 10.1007/s12602-017-9275-9
  • Gadde, U.D., Oh, S., Lee, Y., Davis, E., Zimmerman, N., Rehberger, T. & Lillehoj, H.S. (2017c). Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Research in Veterinary Science, 114, 236–243. doi: 10.1016/j.rvsc.2017.05.004
  • Gareau, M.G., Sherman, P.M. & Walker, W.A. (2010). Probiotics and the gut microbiota in intestinal health and disease. Nature Reviews Gastroenterology & Hepatology, 7, 503–514. doi: 10.1038/nrgastro.2010.117
  • Ghasemian, M. & Jahanian, R. (2016). Dietary mannan-oligosaccharides supplementation could affect performance, immunocompetence, serum lipid metabolites, intestinal bacterial populations, and ileal nutrient digestibility in aged laying hens. Animal Feed Science and Technology, 213, 81–89. doi: 10.1016/j.anifeedsci.2015.12.012
  • Giang, H.H., Viet, T.Q., Ogle, B. & Lindberg, J.E. (2010). Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria. Livestock Science, 129, 95–103. doi: 10.1016/j.livsci.2010.01.010
  • Guo, X., Li, D., Lu, W., Piao, X. & Chen, X. (2006). Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie van Leeuwenhoek, 90, 139–146. doi: 10.1007/s10482-006-9067-9
  • Haghighi, H.R., Gong, J., Gyles, C.L., Hayes, M.A., Sanei, B., Parvizi, P., Gisavi, H., Chambers, J.R. & Sharif, S. (2005). Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Diagnostic Laboratory Immunology, 12, 1387–1392.
  • Hancock, R.E.W. & Chapple, D.S. (1999). Peptide antibiotics. Antimicrobial Agents and Chemotherapy, 43, 1317–1323.
  • Harvey, R., Norman, K., Andrews, K., Hume, M., Scanlan, C., Callaway, T., Anderson, R. & Nisbet, D. (2011). Clostridium difficile in poultry and poultry meat. Foodborne Pathogens and Disease, 8, 1321–1323. doi: 10.1089/fpd.2011.0936
  • Hochepied, T., Wullaert, A., Berger, F.G., Baumann, H., Brouckaert, P., Steidler, L. & Libert, C. (2002). Overexpression of α(1)-acid glycoprotein in transgenic mice leads to sensitisation to acute colitis. Gut, 51, 398–404. doi: 10.1136/gut.51.3.398
  • Hosoi, T., Amentani, A., Kiuchi, K. & Kaminogawa, S. (2000). Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Canadian Journal of Microbiology, 46, 892–897. doi: 10.1139/w00-070
  • Hun, L. (2009). Bacillus coagulans significantly improved abdominal pain and bloating in patients with IBS. Postgraduate Medicine, 121, 119–124. doi: 10.3810/pgm.2009.03.1984
  • Huyghebaert, G., Ducatelle, R. & Van Immerseel, F. (2011). An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal, 187, 182–188. doi: 10.1016/j.tvjl.2010.03.003
  • Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R. & Chirakkal, H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry Science, 92, 370–374. doi: 10.3382/ps.2012-02528
  • Jeong, J.S. & Kim, I.H. (2014). Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poultry Science, 93, 3097–3103. doi: 10.3382/ps.2014-04086
  • Johansson, M.E.V., Phillipson, M., Petersson, J., Velcich, A., Holm, L. & Hansson, G.C. (2008). The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 105, 15064–15069. doi: 10.1073/pnas.0803124105
  • Jukes, T.H., Stokstad, E.L.R., Tayloe, R.R., Cunha, T.J., Edwards, H.M. & Meadows, G.B. (1950). Growth-promoting effect of aureomycin on pigs. Archives of Biochemistry, 26, 324–325.
  • Kamoun, F., Fguira, I.B., Hassen, N., Mejdoub, H., Lereclus, D. & Jaoua, S. (2011). Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Applied Biochemistry and Biotechnology, 165, 300–314. doi: 10.1007/s12010-011-9252-9
  • Kamoun, F., Mejdoub, H., Aouissaoui, H., Reinbolt, J., Hammami, A. & Jaoua, S. (2005). Purification, amino acid sequence and characterization of bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. Journal of Applied Microbiology, 98, 881–888. doi: 10.1111/j.1365-2672.2004.02513.x
  • Kaplan, H. & Hutkins, R.W. (2003). Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Applied and Environmental Microbiology, 69, 2217–2222. doi: 10.1128/AEM.69.4.2217-2222.2003
  • Kim, D.K., Lillehoj, H.S., Jang, S.I., Lee, S.H., Hong, Y.H. & Lamont, S.J. (2015). Genetically disparate Fayoumi chicken lines show different response to avian necrotic enteritis. Journal of Poultry Science, 52, 245–252. doi: 10.2141/jpsa.0140203
  • Knap, I., Kehlet, A.B., Bennedsen, M., Mathis, G.F., Hofacre, C.L., Lumpkins, B.S., Jensen, M.M., Raun, M. & Lay, A. (2011). Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poultry Science, 90, 1690–1694. doi: 10.3382/ps.2010-01056
  • Knap, I., Lund, B., Kehlet, A.B., Hofacre, C. & Mathis, G. (2010). Bacillus licheniformis prevents necrotic enteritis in broiler chickens. Avian Diseases, 54, 931–935. doi: 10.1637/9106-101509-ResNote.1
  • La Ragione, R.M. & Woodward, M.J. (2003). Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Veterinary Microbiology, 94, 245–256. doi: 10.1016/S0378-1135(03)00077-4
  • Lee, H. & Kim, H.Y. (2011). Lantibiotics, class I bacteriocins from the genus Bacillus. Journal of Microbiology and Biotechnology, 21, 229–235.
  • Lee, K., Kyung, D., Lillehoj, H.S., Jang, S.I. & Lee, S.-h. (2015). Immune modulation by Bacillus subtilis-based direct-fed microbials in commercial broiler chickens. Animal Feed Sceince and Technology, 200, 76–85. doi: 10.1016/j.anifeedsci.2014.12.006
  • Lee, K., Lee, S.H., Lillehoj, H.S., Li, G., Jang, S.I., Babu, U.S., Park, M.S., Kim, D.K., Lillehoj, E.P., Neumann, A.P., Rehberger, T.G. & Siragusa, G.R. (2010a). Effects of direct-fed microbials on growth performance, gut morphometry, and immune characteristics in broiler chickens. Poultry Science, 89, 203–216. doi: 10.3382/ps.2009-00418
  • Lee, K., Li, G., Lillehoj, H.S., Lee, S.H., Jang, S.I., Babu, U.S., Lillehoj, E.P., Neumann, A.P. & Siragusa, G.R. (2011). Bacillus subtilis-based direct-fed microbials augment macrophage function in broiler chickens. Research in Veterinary Science, 91, e87–91.
  • Lee, K., Lillehoj, H.S., Jang, S.I. & Lee, S.-H. (2014). Effects of salinomycin and Bacillus subtilis on growth performance and immune responses in broiler chickens. Research in Veterinary Science, 97, 304–308. doi: 10.1016/j.rvsc.2014.07.021
  • Lee, K., Lillehoj, H.S., Jang, S.I., Lee, S.-H., Bautista, D. A. & Siragusa, G. R. (2013). Effect of Bacillus subtilis-based direct-fed microbials on immune status in broiler chickens raised on fresh or used litter. Asian-Australasian Journal of Animal Sciences, 26, 1592–1597. doi: 10.5713/ajas.2013.13178
  • Lee, K., Lillehoj, H.S., Jang, S.I., Li, G., Lee, S.-H., Lillehoj, E.P. & Siragusa, G.R. (2010b). Effect of Bacillus-based direct-fed microbials on Eimeria maxima infection in broiler chickens. Comparative Immunology, Microbiology and Infectious Diseases, 33, e105–e110. doi: 10.1016/j.cimid.2010.06.001
  • Lillehoj, H.S. & Trout, J.M. (1996). Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clinical Microbiology Reviews, 9, 349–360.
  • Lin, Y., Xu, S., Zeng, D., Ni, X., Zhou, M., Zeng, Y., Wang, H., Zhou, Y., Zhu, H., Pan, K. & Li, G. (2017). Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. Plos One, 12, e0182426. doi: 10.1371/journal.pone.0182426
  • Liu, W., Hansen, J.N. (1992). Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis. Journal of Biological Chemistry, 267, 25078–25085.
  • Lund, B.M. & Peck, M.W. (2015). A possible route for foodborne transmission of Clostridium difficile? Foodborne Pathogens and Disease, 12, 177–182. doi: 10.1089/fpd.2014.1842
  • Mackowiak, P.A. (2013). Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long-life. Frontiers in Public Health, 1, 52, 1–3. doi: 10.3389/fpubh.2013.00052
  • Maget-Dana, R. & Peypoux, F. (1994). Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 87, 151–174. doi: 10.1016/0300-483X(94)90159-7
  • Maróti, G., Kereszt, A., Kondorosi, É., & Mergaert, P. (2011). Natural roles of antimicrobial peptides in microbes, plants and animals. Research in Microbiology, 162, 363–374. doi: 10.1016/j.resmic.2011.02.005
  • Molnár, A.K., Podmaniczky, B., Kürti, P., Tenk, I., Glávits, R., Virág, G. & Szabó, Z. (2011). Effect of different concentrations of Bacillus subtilis on growth performance, carcase quality, gut microflora and immune response of broiler chickens. British Poultry Science, 52, 658–665. doi: 10.1080/00071668.2011.636029
  • Moore, P.R., Evenson, A., Luckey, T.D., McCoy, E., Elvehjem, C.A. & Hart, E.B. (1946). Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. Journal of Biological Chemistry, 165, 437–441.
  • Moura, P., Barata, R., Carvalheiro, F., Gírio, F., Loureiro-Dias, M.C. & Esteves, M.P. (2007). In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT – Food Science and Technology, 40, 963–972. doi: 10.1016/j.lwt.2006.07.013
  • Murugesan, G.R., Romero, L.F. & Persia, M.E. (2014). Effects of protease, phytase and a Bacillus sp. direct-fed microbial on nutrient and energy digestibility, ileal brush border digestive enzyme activity and cecal short-chain fatty acid concentration in broiler chickens. Plos One, 9, 1–7. doi: 10.1371/journal.pone.0101888
  • Novak, R., Bogovič Matijašić, B., Terčič, D., Červek, M., Gorjanc, G., Holcman, A., Levart, A. & Rogelj, I. (2011). Effects of two probiotic additives containing Bacillus spores on carcass characteristics, blood lipids and cecal volatile fatty acids in meat type chickens. Journal of Animal Physiology and Animal Nutrition, 95, 424–433. doi: 10.1111/j.1439-0396.2010.01068.x
  • Oakley, B.B., Lillehoj, H.S., Kogut, M.H., Kim, W.K., Maurer, J.J., Pedroso, A., Lee, M.D., Collett, S.R., Johnson, T.J. & Cox, N.A. (2014). The chicken gastrointestinal microbiome. FEMS Microbiology Letters, 360, 100–112. doi: 10.1111/1574-6968.12608
  • Opalinski, M., Maiorka, A., Dahlke, F., Cunha, F., Vargas, F.S.C. & Cardozo, E. (2007). On the use of a probiotic (Bacillus subtilis-strain DSM 17299) as growth promoter in broiler diets. Brazilian Journal of Poultry Science, 9, 99–103. doi: 10.1590/S1516-635X2007000200004
  • Pan, D. & Yu, Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet Gut Microbes, 5, 108–119. doi: 10.4161/gmic.26945
  • Parisot, J., Carey, S., Breukink, E., Chan, W.C., Narbad, A. & Bonev, B. (2008). Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrobial Agents and Chemotherapy, 52, 612–618. doi: 10.1128/AAC.00836-07
  • Park, J.H. & Kim, I.H. (2014). Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poultry Science, 93, 2054–2059. doi: 10.3382/ps.2013-03818
  • Park, S.S., Lillehoj, H.S., Allen, P.C., Park, D.W., FitzCoy, S., Bautista, D.A. & Lillehoj, E.P. (2008). Immunopathology and cytokine responses in broiler chickens coinfected with Eimeria maxima and Clostridium perfringens with the use of an animal model of necrotic enteritis. Avian Diseases, 52, 14–22. doi: 10.1637/7997-041707-Reg
  • Pérez-García, A., Romero, D. & de Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Current Opinion in Biotechnology, 22, 187–193. doi: 10.1016/j.copbio.2010.12.003
  • Persoons, D., Van Hoorebeke, S., Hermans, K., Butaye, P., de Kruif, A., Haesebrouck, F. & Dewulf, J. (2009). Methicillin-resistant Staphylococcus aureus in poultry. Emerging Infectious Diseases, 15, 452–453. doi: 10.3201/eid1503.080696
  • Platzer, C., Meisel, C., Vogt, K., Platzer, M., Volk, H.D. (1995). Up-regulation of monocytic IL-10 by tumor necrosis factor-alpha and cAMP elevating drugs. International Immunology, 7, 517–523. doi: 10.1093/intimm/7.4.517
  • Privett, B.J., Broadnax, A.D., Bauman, S.J., Riccio, D.A. & Schoenfisch, M.H. (2012). Examination of bacterial resistance to exogenous nitric oxide. Nitric Oxide, 26, 169–173. doi: 10.1016/j.niox.2012.02.002
  • Quartieri, A., Simone, M., Gozzoli, C., Popovic, M., D’Auria, G., Amaretti, A., Raimondi, S. & Rossi, M. (2016). Comparison of culture-dependent and independent approaches to characterize fecal bifidobacteria and lactobacilli. Anaerobe, 38, 130–137. doi: 10.1016/j.anaerobe.2015.10.006
  • Rea, M.C., Sit, C.S., Clayton, E., O’Connor, P.M., Whittal, R.M., Zheng, J., Vederas, J.C., Ross, R.P. & Hill, C. (2010). Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proceedings of the National Academy of Sciences, 107, 9352–9357. doi: 10.1073/pnas.0913554107
  • Rhee, K.J., Sethupathi, P., Driks, A., Lanning, D.K. & Knight, K.L. (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. The Journal of Immunology, 172, 1118–1124. doi: 10.4049/jimmunol.172.2.1118
  • Rinttilä, T. & Apajalahti, J. (2013). Intestinal microbiota and metabolites—implications for broiler chicken health and performance. The Journal of Applied Poultry Research, 22, 647–658. doi: 10.3382/japr.2013-00742
  • Sang, Y. & Blecha, F. (2008). Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Animal Health Research Reviews, 9, 227–235. doi: 10.1017/S1466252308001497
  • Santini, C., Baffoni, L., Gaggia, F., Granata, M., Gasbarri, R., Di Gioia, D. & Biavati, B. (2010). Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni. International Journal of Food Microbiology, 141, S98–S108. doi: 10.1016/j.ijfoodmicro.2010.03.039
  • Searle, L.E.J., Best, A., Nunez, A., Salguero, F.J., Johnson, L., Weyer, U., Dugdale, A.H., Cooley, W.A., Carter, B., Jones, G., Tzortzis, G., Woodward, M.J. & La Ragione, R.M. (2009). A mixture containing galactooligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium infection in mice. Journal of Medical Microbiology, 58, 37–48. doi: 10.1099/jmm.0.004390-0
  • Sen, S., Ingale, S.L., Kim, Y.W., Kim, J.S., Kim, K.H., Lohakare, J.D., Kim, E.K., Kim, H.S., Ryu, M.H., Kwon, I.K. & Chae, B.J. (2012). Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Research in Veterinary Science, 93, 264–268. doi: 10.1016/j.rvsc.2011.05.021
  • Setlow, P. (2006). Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 101, 514–525. doi: 10.1111/j.1365-2672.2005.02736.x
  • Shen, T.-Y., Qin, H.-L., Gao, Z.-G., Fan, X.-B., Hang, X.-M. & Jiang, Y.-Q. (2006). Influences of enteral nutrition combined with probiotics on gut microflora and barrier function of rats with abdominal infection. World Journal of Gastroenterology, 12, 4352–4358. doi: 10.3748/wjg.v12.i27.4352
  • Shirley, M.W. & Lillehoj, H.S. (2012). The long view: a selective review of 40 years of coccidiosis research. Avian Pathology, 41, 111–121. doi: 10.1080/03079457.2012.666338
  • Shivaramaiah, S., Pumford, N.R., Morgan, M.J., Wolfenden, R.E., Wolfenden, A.D., Torres-Rodríguez, A., Hargis, B.M. & Téllez, G. (2011). Evaluation of Bacillus species as potential candidates for direct-fed microbials in commercial poultry. Poultry Science, 90, 1574–1580. doi: 10.3382/ps.2010-00745
  • Silva, P.T., Fries, L.L.M., Menezes, C.R., Silva, C.B., Soriani, H.H., Bastos, J.O., Motta, M.H. & Ribeiro, R.F. (2015). Microencapsulation of probiotics by spray drying: evaluation of survival in simulated gastrointestinal conditions and availability under different storage temperatures. Ciência Rural, 45, 1342–1347. doi: 10.1590/0103-8478cr20140211
  • Starr, M.P. & Reynolds, D.M. (1951). Streptomycin resistance of coliform bacteria from turkeys fed streptomycin. American Journal of Public Health and the Nations Health, 41, 1375–1380. doi: 10.2105/AJPH.41.11_Pt_1.1375
  • Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857. doi: 10.1111/j.1365-2958.2005.04587.x
  • Sumi, C., Yang, B., Yeo, I.-C. & Hahm, Y. (2015). Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Canadian Journal of Microbiology, 61, 93–103. doi: 10.1139/cjm-2014-0613
  • Suva, M., Sureja, V. & Kheni, D. (2016). Novel insight on probiotic Bacillus subtilis: mechanism of action and clinical applications. Journal of Current Research in Scientific Medicine, 2, 65–72. doi: 10.4103/2455-3069.198381
  • Takimoto, T., Sato, K., Akiba, Y. & Takahashi, K. (2008). Role of chicken TL1A on inflammatory responses and partial characterization of its receptor. The Journal of Immunology, 180, 8327–8332. doi: 10.4049/jimmunol.180.12.8327
  • Teo, a.Y. & Tan, H.M. (2007). Evaluation of the performance and intestinal gut microflora of broilers fed on corn-soy diets supplemented with Bacillus subtilis PB6 (CloSTAT). Journal of Applied Poultry Research, 16, 296–303. doi: 10.1093/japr/16.3.296
  • Torok, V.A., Hughes, R.J., Mikkelsen, L.L., Perez-Maldonado, R., Balding, K., MacAlpine, R., Percy, N.J. & Ophel-Keller, K. (2011). Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Applied and Environmental Microbiology, 77, 5868–5878. doi: 10.1128/AEM.00165-11
  • US FDA. (2013). New animal drugs and new animal drug combination products administered in or on medicated feed or drinking water of food-producing animals: recommendations for drug sponsors for voluntarily aligning product use conditions with GFI #209. Department of Health and Human Services.
  • US FDA. (2017). FDA’s strategy on antimicrobial resistance – questions and answers.
  • Van Immerseel, F., De Buck, J., Pasmans, F., Velge, P., Bottreau, E., Fievez, V., Haesebrouck, F. & Ducatelle, R. (2003). Invasion of Salmonella Enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. International Journal of Food Microbiology, 85, 237–248. doi: 10.1016/S0168-1605(02)00542-1
  • Vila, B., Esteve-Garcia, E. & Brufau, J. (2010). Probiotic micro-organisms: 100 years of innovation and efficacy; modes of action. World’s Poultry Science Journal, 66, 369–380. doi: 10.1017/S0043933910000474
  • Vollenbroich, D., Pauli, G., Ozel, M. & Vater, J. (1997). Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Applied and Environmental Microbiology, 63, 44–49.
  • Wade, B. & Keyburn, A. (2015). The true cost of necrotic enteritis. Poultry World.
  • Waite, D.W. & Taylor, M.W. (2014). Characterizing the avian gut microbiota: membership, driving influences, and potential function. Frontiers in Microbiology, 5, 1–12. doi: 10.3389/fmicb.2014.00223
  • WHO. (2017). Antibiotic resistance.
  • Williams, C.H., Witherly, S.A. & Buddington, R.K. (1994). Influence of dietary neosugar on selected bacterial groups of the human faecal microbiota. Microbial Ecology in Health and Disease, 7, 91–97. doi: 10.3109/08910609409141577
  • Wine, E., Gareau, M.G., Johnson-Henry, K. & Sherman, P.M. (2009). Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiology Letter, 300, 146–156. doi: 10.1111/j.1574-6968.2009.01781.x
  • Xu, X., Huang, Q., Mao, Y., Cui, Z., Li, Y., Huang, Y., Rajput, I.R., Yu, D. & Li, W. (2012). Immunomodulatory effects of Bacillus subtilis (natto) B4 spores on murine macrophages. Microbiology and Immunology, 56, 817–824. doi: 10.1111/j.1348-0421.2012.00508.x
  • Yegani, M. & Korver, D.R. (2008). Factors affecting intestinal health in poultry. Poultry Science, 87, 2052–2063. doi: 10.3382/ps.2008-00091
  • Zhao, P.Y. & Kim, I.H. (2015). Effect of direct-fed microbial on growth performance, nutrient digestibility, fecal noxious gas emission, fecal microbial flora and diarrhea score in weanling pigs. Animal Feed Science and Technology, 200, 86–92. doi: 10.1016/j.anifeedsci.2014.12.010
  • Zhao, X. & Kuipers, O. (2016). Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics, 17, 1–18. doi: 10.1186/s12864-016-2448-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.