835
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Antiviral activity and underlying mechanisms of baicalin against avian infectious bronchitis virus in vitro

, , , , , , , , , & ORCID Icon show all
Pages 574-589 | Received 01 Apr 2022, Accepted 29 Jul 2022, Published online: 24 Oct 2022

References

  • Bande, F., Arshad, S.S., Omar, A.R., Hair-Bejo, M., Mahmuda, A. & Nair, V. (2017). Global distributions and strain diversity of avian infectious bronchitis virus: a review. Animal Health Research Reviews, 18, 70–83.
  • Bidet, K., Dadlani, D. & Garcia-Blanco, M.A. (2017). Correction: G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS Pathogens, 13, e1006295.
  • Chen, Y., Yuan, W., Yang, Y., Yao, F., Ming, K. & Liu, J. (2018). Inhibition mechanisms of baicalin and its phospholipid complex against DHAV-1 replication. Poultry Science, 97, 3816–3825.
  • Cheng, J., Zhao, Y., Hu, Y., Zhao, J., Cheng, Y. & Zhang, Z. (2021). The furin-S2’ site in avian coronavirus plays a key role in central nervous system damage progression. Journal of Virology, 95, 2447–20.
  • Cavanagh, D. (2007). Coronavirus avian infectious bronchitis virus. Veterinary Research, 38, 281–297.
  • Feng, H., Wang, X., Zhang, J., Zhang, K., Zou, W., Zhang, K., Wang, L., Guo, Z., Qiu, Z., Wang, G., Xin, R. & Li, J. (2021). Combined effect of Shegandilong granule and doxycycline on immune responses and protection against avian infectious bronchitis virus in broilers. Frontiers in Veterinary Science, 8, 756629.
  • Franzo, G., Tucciarone, C.M., Legnardi, M. & Cecchinato, M. (2021). Effect of genome composition and codon bias on infectious bronchitis virus evolution and adaptation to target tissues. BMC Medical Genomics, 22, 244.
  • Fu, Y.J., Xu, B., Huang, S.W., Luo, X., Deng, X.L., Luo, S., Liu, C., Wang, Q., Chen, J.Y. & Zhou, L. (2021). Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14. Acta Pharmacologica Sinica, 42, 88–96.
  • Gao, B., Gong, X., Fang, S., Weng, W., Wang, H., Chu, H., Sun, Y., Meng, C., Tan, L., Song, C., Qiu, X., Liu, W., Forlenza, M., Ding, C. & Liao, Y. (2021). Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. PLoS Pathogens, 17, e1008690.
  • Gao, M., Wang, Q., Zhao, W., Chen, Y., Zhang, T., Han, Z., Xu, Q., Kong, X. & Liu, S. (2016). Serotype, antigenicity, and pathogenicity of a naturally recombinant TW I genotype infectious bronchitis coronavirus in China. Veterinary Microbiology, 191, 1–8.
  • Geng, P., Zhu, H., Zhou, W., Su, C., Chen, M. & Shi, X. (2020). Baicalin inhibits influenza A virus infection via promotion of M1 macrophage polarization. Frontiers in Pharmacology, 11, 01298.
  • Hu, Z., Wang, Y., Tang, Q., Yang, X., Qin, Y. & Chen, M. (2018). Inclusion bodies of human parainfluenza virus type 3 inhibit antiviral stress granule formation by shielding viral RNAs. PLoS Pathogens, 14, e1006948.
  • Ignjatović, J. & Sapats, S. (2000). Avian infectious bronchitis virus. Scientific Technical Review, 19, 493–508.
  • Jia, Y., Xu, R., Hu, Y., Zhu, T., Ma, T., Wu, H. & Hu, L. (2016). Anti-NDV activity of baicalin from a traditional Chinese medicine in vitro. Journal of Veterinary Medical Science, 78, 819–824.
  • Kint, J., Langereis, M.A., Maier, H.J., Britton, P., Kuppeveld, F.J., Koumans, J., Wiegertjes, G.F. & Forlenza, M. (2016). Infectious bronchitis coronavirus limits interferon production by inducing a host shutoff that requires accessory protein 5b. Journal of Virology, 90, 7519–7528.
  • Laconi, A., Listorti, V., Franzo, G., Cecchinato, M., Naylor, C., Lupini, C. & Catelli, E. (2019). Molecular characterization of whole genome sequence of infectious bronchitis virus 624I genotype confirms the close relationship with Q1 genotype. Transboundary and Emerging Diseases, 66, 207–216.
  • Lelešius, R., Karpovaitė, A., Mickienė, R., Drevinskas, T., Tiso, N., Ragažinskienė, O., Kubilienė, L., Maruška, A. & Šalomskas, A. (2019). In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC Veterinary Research, 15, 178.
  • Li, H., Cui, P., Fu, X., Zhang, L., Yan, W., Wang, H. & Yang, X. (2021). Identification and analysis of long non-coding RNAs and mRNAs in chicken macrophages infected with avian infectious bronchitis coronavirus. BMC Genomics, 22, 67.
  • Li, J., Yin, J., Sui, X., Li, G. & Ren, X. (2009). Comparative analysis of the effect of glycyrrhizin diammonium and lithium chloride on infectious bronchitis virus infection in vitro. Avian Pathology, 38, 215–221.
  • Li, X., Liu, Y., Wu, T., Jin, Y., Cheng, J., Wan, C., Qian, W., Xing, F. & Shi, W. (2015). The antiviral effect of baicalin on enterovirus 71 in vitro. Viruses, 7, 4756–4771.
  • Lin, S.Y. & Chen, H.W. (2017). Infectious bronchitis virus variants: molecular analysis and pathogenicity investigation. International Journal of Molecular Sciences, 18, 10.
  • Madu, I.G., Chu, V.C., Lee, H., Regan, A.D., Bauman, B.E. & Whittaker, G.R. (2007). Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette. Avian Diseases, 51, 45–51.
  • Moghaddam, E., Teoh, B.T., Sam, S.S., Lani, R., Hassandarvish, P., Chik, Z., Yueh, A., Abubakar, S. & Zandi, K. (2014). Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Scientific Reports, 4, 5452.
  • Nakagawa, K., Narayanan, K., Wada, M. & Makino, S. (2018). Inhibition of stress granule formation by Middle East respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication. Journal of Virology, 92, e00902–18.
  • Nayak, M.K., Agrawal, A.S., Bose, S., Naskar, S., Bhowmick, R., Chakrabarti, S., Sarkar, S. & Chawla-Sarkar, M. (2014). Antiviral activity of baicalin against influenza virus H1N1-pdm09 is due to modulation of NS1-mediated cellular innate immune responses. Journal of Antimicrobial Chemotherapy, 69, 1298–1310.
  • Onomoto, K., Jogi, M., Yoo, J.S., Narita, R., Morimoto, S., Takemura, A., Sambhara, S., Kawaguchi, A., Osari, S., Nagata, K., Matsumiya, T., Namiki, H., Yoneyama, M. & Fujita, T. (2012). Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One, 7, e43031.
  • Oo, A., Rausalu, K., Merits, A., Higgs, S., Vanlandingham, D., Bakar, S.A. & Zandi, K. (2018). Deciphering the potential of baicalin as an antiviral agent for Chikungunya virus infection. Antiviral Research, 150, 101–111.
  • Peng, L.Y., Yuan, M., Song, K., Yu, J.L., Li, J.H., Huang, J.N., Yi, P.F., Fu, B.D. & Shen, H.Q. (2019). Baicalin alleviated APEC-induced acute lung injury in chicken by inhibiting NF-κB pathway activation. International Immunopharmacology, 72, 467–472.
  • Qian, K., Kong, Z.R., Zhang, J., Cheng, X.W., Wu, Z.Y., Gu, C.X., Shao, H.X. & Qin, A.J. (2018). Baicalin is an inhibitor of subgroup J avian leukosis virus infection. Virus Research, 248, 63–70.
  • Raaben, M., Koerkamp, M.J., Rottier, P.J. & Haan, C.A. (2007). Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cellular Microbiology, 9, 2218–2229.
  • Reed, L.J. & Muench, H. (1938). A simple method for estimating fifty percent end points. American Journal of Hygiene, 27, 493–497.
  • Shirvani, E., Paldurai, A., Manoharan, V.K., Varghese, B.P. & Samal, S.K. (2020). Author correction: A recombinant Newcastle disease virus (NDV) expressing S protein of infectious bronchitis virus (IBV) protects chickens against IBV and NDV. Scientific Reports, 10, 762.
  • Visser, L.J., Langereis, M.A., Groot, R.J. & Kuppeveld, F.J.M. (2019). Essential role of enterovirus 2A protease in counteracting stress granule formation and the induction of type I interferon. Journal of Virology, 93, e00222–19.
  • Wang, X., Liao, Y., Yap, P.L., Png, K.J., Tam, J.P. & Liu, D.X. (2009). Inhibition of protein kinase R activation and up-regulation of GADD34 expression play a synergistic role in facilitating coronavirus replication by maintaining de novo protein synthesis in virus-infected cells. Journal of Virology, 3, 12462–12472.
  • Wickramasinghe, I.N., de Vries, R.P., Gröne, A., de Haan, C.A. & Verheije, M.H. (2011). Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. Journal of Virology, 85, 8903–8912.
  • Wu, Z., Chen, C., Miao, Y., Liu, Y., Zhang, Q., Li, R., Ding, L., Ishfaq, M. & Li, J. (2019). Baicalin attenuates mycoplasma gallisepticum-induced inflammation via inhibition of the TLR2-NF-κB pathway in chicken and DF-1 cells. Infection and Drug Resistance, 12, 3911–3923.
  • Yang, F., Feng, C., Yao, Y., Qin, A., Shao, H. & Qian, K. (2020). Antiviral effect of baicalin on Marek’s disease virus in CEF cells. BMC Veterinary Research, 16, 371.
  • Yin, J., Li, G., Li, J., Yang, Q. & Ren, X. (2011). In vitro and in vivo effects of Houttuynia cordata on infectious bronchitis virus. Avian Pathology, 40, 491–498.
  • Zhang, M., Wu, Q., Chen, Y., Duan, M., Tian, G., Deng, X., Sun, Y., Zhou, T., Zhang, G., Chen, W. & Chen, J. (2018). Inhibition of proanthocyanidin A2 on porcine reproductive and respiratory syndrome virus replication in vitro. PLoS One, 13, e0193309.
  • Zhang, S., Sun, Y., Chen, H., Dai, Y., Zhan, Y., Yu, S., Qiu, X., Tan, L., Song, C. & Ding, C. (2014). Activation of the PKR/eIF2α signaling cascade inhibits replication of Newcastle disease virus. Virology Journal, 11, 62.
  • Zhang, Y., Li, X.Y., Zhang, B.S., Ren, L.N., Lu, Y.P., Tang, J.W., Lv, D., Yong, L., Lin, L.T., Lin, Z.X., Mo, Q. & Mo, M.L. (2022). In vivo antiviral effect of plant essential oils against avian infectious bronchitis virus. BMC Veterinary Research, 18, 90.
  • Zhu, P., Lv, C., Fang, C., Peng, X., Yan, Y., Liao, M. & Zhou, J. (2020). Heat shock protein member 8 is an attachment factor for infectious bronchitis virus. Frontiers in Microbiology, 11, 1630.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.