317
Views
0
CrossRef citations to date
0
Altmetric
Articles

Antigenic and molecular characterization of isolates of the Brazilian genotype BR-I (GI-11) of infectious bronchitis virus supports its recognition as BR-I serotype

, , ORCID Icon, ORCID Icon, &
Pages 323-338 | Received 17 Apr 2023, Accepted 19 Jun 2023, Published online: 21 Jul 2023

References

  • Ali, A., Ojkic, D., Elshafiee, E.A., Shany, S., El-Safty, M.M., Shalaby, A.A. & Abdul-Careem, M.F. (2022). Genotyping and in silico analysis of Delmarva (DMV/1639) infectious bronchitis virus (IBV) spike 1 (S1) glycoprotein. Genes, 13, 1–19.
  • Assayag Júnior, M.S., Chacón, J.L., Rocha, P.T. & Kuana, S. (2012). Economic impact of infectious bronchitis in a Brazilian poultry integration system. VII international symposium on avian corona- and pneumoviruses and complicating pathogens, Rauischholzhausen, Germany, 18–21 June 2012, 80–83. Druckerei Schröder.
  • Bochkov, Y.A., Batchenko, G.V., Shcherbakova, L.O., Borisov, A.V. & Drygin, V.V. (2006). Molecular epizootiology of avian infectious bronchitis in Russia. Avian Pathology, 35, 379–393.
  • Bouckaert, R.R. & Drummond, A.J. (2017). Bmodeltest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17, 42.
  • Callison, S.A., Jackwood, M.W. & Hilt, D.A. (2001). Molecular characterization of infectious bronchitis virus isolates foreign to the United States and comparison with United States isolates. Avian Diseases, 45, 492–499.
  • Carranza, C., Astolfi-Ferreira, C.S., Santander Parra, S.H., Nuñez, L.F.N., Penzes, Z., Chacón, J.L., Sesti, L., Chacón, R.D. & Piantino Ferreira, A.J. (2017). Genetic characterisation and analysis of infectious bronchitis virus isolated from Brazilian flocks between 2010 and 2015. British Poultry Science, 58, 610–623.
  • Cavanagh, D. (1983). Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. Journal of General Virology, 64, 1787–1791.
  • Cavanagh, D., Davis, P.J., Cook, J.K., Li, D., Kant, A. & Koch, G. (1992). Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathology, 21, 33–43.
  • Cavanagh, D., Elus, M.M. & Cook, J.K. (1997). Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo. Avian Pathology, 26, 63–74.
  • Cavanagh, D., Mawditt, K., Welchman, D.D.B., Britton, P. & Gough, R.E. (2002). Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys. Avian Pathology, 31, 81–93.
  • Chacón, J.L., Assayag, M.S., Revolledo, L., Astolfi-Ferreira, C.S., Vejarano, M.P., Jones, R.C. & Piantino Ferreira, A.J. (2014). Pathogenicity and molecular characteristics of infectious bronchitis virus (IBV) strains isolated from broilers showing diarrhoea and respiratory disease. British Poultry Science, 55, 271–283.
  • Chacon, J.L., Rodrigues, J.N., Assayag Junior, M.S., Peloso, C., Pedroso, A.C. & Ferreira, A.J.P. (2011). Epidemiological survey and molecular characterization of avian infectious bronchitis virus in Brazil between 2003 and 2009. Avian Pathology, 40, 153–162.
  • Chacón, R.D., Astolfi-Ferreira, C.S., Chacón, J.L., Nuñez, L.F.N., De la Torre, D.I. & Piantino Ferreira, A.J. (2019). A seminested RT-PCR for molecular genotyping of the Brazilian BR-I infectious bronchitis virus strain (GI-11). Molecular and Cellular Probes, 47, 101426.
  • Dolz, R., Pujols, J., Ordóñez, G., Porta, R. & Majó, N. (2008). Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology, 374, 50–59.
  • Eckert, C.G., Samis, K.E. & Lougheed, S.C. (2008). Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Molecular Ecology, 17, 1170–1188.
  • Fan, W., Tang, N., Dong, Z., Chen, J., Zhang, W., Zhao, C., He, Y., Li, M., Wu, C., Wei, T., Huang, T., Mo, M. & Wei, P. (2019). Genetic analysis of avian coronavirus infectious bronchitis virus in yellow chickens in southern China over the past decade: revealing the changes of genetic diversity, dominant genotypes, and selection pressure. Viruses, 11, 898.
  • Fraga, A.P.de., Gräf, T., Pereira, C.S., Ikuta, N., Fonseca, A.S.K. & Lunge, V.R. (2018). Phylodynamic analysis and molecular diversity of the avian infectious bronchitis virus of chickens in Brazil. Infection, Genetics and Evolution, 61, 77–83.
  • Franzo, G., Massi, P., Tucciarone, C.M., Barbieri, I., Tosi, G., Fiorentini, L., Ciccozzi, M., Lavazza, A., Cecchinato, M. & Moreno, A. (2017). Think globally, act locally: phylodynamic reconstruction of infectious bronchitis virus (IBV) QX genotype (GI-19 lineage) reveals different population dynamics and spreading patterns when evaluated on different epidemiological scales. PLoS One, 12, e0184401.
  • Fung, T.S. & Liu, D.X. (2018). Post-translational modifications of coronavirus proteins: roles and function. Future Virology, 13, 405–430.
  • Gelb, J., Weisman, Y., Ladman, B.S. & Meir, R. (2005). S1 gene characteristics and efficacy of vaccination against infectious bronchitis virus field isolates from the United States and Israel (1996 to 2000). Avian Pathology, 34, 194–203.
  • Gibbs, M.J., Armstrong, J.S. & Gibbs, A.J. (2000). Sister-Scanning: a Monte Carlo procedure for assessing signalsin recombinant sequences. Bioinformatics, (England), 16, 573–582.
  • Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.
  • Hadfield, J., Megill, C., Bell, S.M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T. & Neher, R.A. (2018). Nextstrain: real-time tracking of pathogen evolution. Bioinformatics, 34, 4121–4123.
  • Hipólito, O. (1957). Isolation and identification of the virus of infectious bronchitis of chickens in Brazil. Arq. Esc. Vet. Univ. Minas Gerais, 10, 131–151.
  • Houta, M.H., Hassan, K.E., Legnardi, M., Tucciarone, C.M., Abdel-Moneim, A.S., Cecchinato, M., El-Sawah, A.A., Ali, A. & Franzo, G. (2021). Phylodynamic and recombination analyses of avian infectious bronchitis GI-23 reveal a widespread recombinant cluster and new among-countries linkages. Animals, 11, 3182.
  • Huang, Y.-P. & Wang, C.-H. (2006). Development of attenuated vaccines from Taiwanese infectious bronchitis virus strains. Vaccine, 24, 785–791.
  • Huddleston, J., Hadfield, J., Sibley, T.R., Lee, J., Fay, K., Ilcisin, M., Harkins, E., Bedford, T., Neher, R.A. & Hodcroft, E.B. (2021). Augur: a bioinformatics toolkit for phylogenetic analyses of human pathogens. Journal of Open Source Software, 6, 2906.
  • Huson, D.H. & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.
  • Ignjatovic, J. & Galli, L. (1994). The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Archives of Virology, 138, 117–134.
  • Ignjatovic, J., Gould, G. & Sapats, S. (2006). Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emerging strains. Archives of Virology, 151, 1567–1585.
  • Ignjatovic, J. & Sapats, S. (2005). Identification of previously unknown antigenic epitopes on the S and N proteins of avian infectious bronchitis virus. Archives of Virology, 150, 1813–1831.
  • Jackwood, M.W., Hilt, D.A., Callison, S.A., Lee, C.W., Plaza, H. & Wade, E. (2001). Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Diseases, 45, 366–372.
  • Jackwood, M.W. & de Wit, S. (2020). Infectious bronchitis. In D.E. Swayne, M. Boulianne, C.M. Logue, L.R. McDougald, V. Nair, D.L. Suarez, S. de Wit, T. Grimes, D. Johnson, M. Kromm, T.Y. Prajitno, I. Rubinoff & G. Zavala (Eds.), Diseases of Poultry (pp. 167–188). Hoboken, NJ: Wiley. https://onlinelibrary.wiley.com/doi/abs/10.10029781119371199.ch4
  • Jackwood, M.W. & Lee, D.-H. (2017). Different evolutionary trajectories of vaccine-controlled and non-controlled avian infectious bronchitis viruses in commercial poultry. PLoS One, 12, e0176709.
  • Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017). Modelfinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589.
  • Kant, A., Koch, G., van Roozelaar, D.J., Kusters, J.G., Poelwijk, F.A. & van der Zeijst, B.A. (1992). Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide. Journal of General Virology, 73, 591–596.
  • Katoh, K., Rozewicki, J. & Yamada, K.D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160–1166.
  • Kosakovsky Pond, S.L. & Frost, S.D.W. (2005). Not so different after all: a comparison of methods for detecting amino acid sites under selection. Molecular Biology and Evolution, 22, 1208–1222.
  • Köster, J. & Rahmann, S. (2012). Snakemake–a scalable bioinformatics workflow engine. Bioinformatics, 28, 2520–2522.
  • Kwon, H.M. & Jackwood, M.W. (1995). Molecular cloning and sequence comparison of the S1 glycoprotein of the Gray and JMK strains of avian infectious bronchitis virus. Virus Genes, 9, 219–229.
  • Ladman, B.S., Loupos, A.B. & Gelb, J. (2006). Infectious bronchitis virus S1 gene sequence comparison is a better predictor of challenge of immunity in chickens than serotyping by virus neutralization. Avian Pathology, 35, 127–133.
  • Lai, M.M.C. & Cavanagh, D. (1997). The molecular biology of coronaviruses. In K. Maramorosch, F.A. Murphy & A.J. Shatkin (Eds.), Advances in Virus Research (Vol. 48, pp. 1–100). New York: Academic Press. https://www.sciencedirect.com/science/article/pii/S0065352708602869
  • Lam, H.M., Ratmann, O. & Boni, M.F. (2018). Improved algorithmic complexity for the 3SEQ recombination detection algorithm. Molecular Biology and Evolution, 35, 247–251.
  • Lee, S.K., Sung, H.W. & Kwon, H.M. (2004). S1 glycoprotein gene analysis of infectious bronchitis viruses isolated in Korea. Archives of Virology, 149, 481–494.
  • Legnardi, M., Tucciarone, C.M., Franzo, G. & Cecchinato, M. (2020). Infectious bronchitis virus evolution, diagnosis and control. Veterinary Sciences, 7, 79.
  • Letunic, I. & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, W293–W296.
  • Marandino, A., Pereda, A., Tomás, G., Hernández, M., Iraola, G., Craig, M.I., Hernández, D., Banda, A., Villegas, P., Panzera, Y. & Pérez, R. (2015). Phylodynamic analysis of avian infectious bronchitis virus in South America. Journal of General Virology, 96, 1340–1346.
  • Marandino, A., Vagnozzi, A., Craig, M.I., Tomás, G., Techera, C., Panzera, Y., Vera, F. & Pérez, R. (2019). Genetic and antigenic heterogeneity of infectious bronchitis virus in South America: implications for control programmes. Avian Pathology, 48, 270–277.
  • Martin, D.P., Posada, D., Crandall, K.A. & Williamson, C. (2005). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Research and Human Retroviruses, 21, 98–102.
  • Martin, D. & Rybicki, E. (2000). RDP: detection of recombination amongst aligned sequences. Bioinformatics, (England), 16, 562–563.
  • Martin, D.P., Varsani, A., Roumagnac, P., Botha, G., Maslamoney, S., Schwab, T., Kelz, Z., Kumar, V. & Murrell, B. (2021). RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evolution, 7, veaa087.
  • Mase, M., Hiramatsu, K., Watanabe, S. & Iseki, H. (2022). Genetic analysis of the complete S1 gene in Japanese infectious bronchitis virus strains. Viruses, 14, 716.
  • McFarlane, R. & Verma, R. (2008). Sequence analysis of the gene coding for the S1 glycoprotein of infectious bronchitis virus (IBV) strains from New Zealand. Virus Genes, 37, 351–357.
  • Moore, K.M., Bennett, J.D., Seal, B.S. & Jackwood, M.W. (1998). Sequence comparison of avian infectious bronchitis virus S1 glycoproteins of the Florida serotype and five variant isolates from Georgia and California. Virus Genes, 17, 63–83.
  • Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S.L. & Scheffler, K. (2013). FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Molecular Biology and Evolution, 30, 1196–1205.
  • Murrell, B., Weaver, S., Smith, M.D., Wertheim, J.O., Murrell, S., Aylward, A., Eren, K., Pollner, T., Martin, D.P., Smith, D.M., Scheffler, K. & Kosakovsky Pond, S.L. (2015). Gene-wide identification of episodic selection. Molecular Biology and Evolution, 32, 1365–1371.
  • Murrell, B., Wertheim, J.O., Moola, S., Weighill, T., Scheffler, K. & Kosakovsky Pond, S.L. (2012). Detecting individual sites subject to episodic diversifying selection. PLoS Genetics, 8, e1002764.
  • Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.
  • Padidam, M., Sawyer, S. & Fauquet, C.M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology, 265, 218–225.
  • Pereson, M.J., Flichman, D.M., Martínez, A.P., Baré, P., Garcia, G.H. & Di Lello, F.A. (2021). Evolutionary analysis of SARS-CoV-2 spike protein for its different clades. Journal of Medical Virology, 93, 3000–3006.
  • Posada, D. & Crandall, K.A. (2001). Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proceedings of the National Academy of Sciences, 98, 13757–13762.
  • Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018). Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology, 67, 901–904.
  • Reed, L.J. & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27, 493–497.
  • Sagulenko, P., Puller, V. & Neher, R.A. (2018). Treetime: maximum-likelihood phylodynamic analysis. Virus Evolution, 4, vex042.
  • Santos, F., da Silva Montassier, M. D. F., Silva, K. R., Okino, C. H., de Oliveira, E. S., Fernandes, C. C. & Montassier, H. J. (2013). Nephritis associated with a S1 variant Brazilian isolate of infectious bronchitis virus and vaccine protection test in experimentally infected chickens. International Journal of Poultry Science, 12, 639.
  • Santos Fernando, F., Coelho Kasmanas, T., Diniz Lopes, P., da Silva Montassier, M. de F., Zanella Mores, M.A., Casagrande Mariguela, V., Pavani, C., Moreira Dos Santos, R., Assayag, M.S. & Montassier, H.J. (2017). Assessment of molecular and genetic evolution, antigenicity and virulence properties during the persistence of the infectious bronchitis virus in broiler breeders. Journal of General Virology, 98, 2470–2481.
  • Smith, J.M. (1992). Analyzing the mosaic structure of genes. Journal of Molecular Evolution, 34, 126–129.
  • Tamura, K., Stecher, G. & Kumar, S. (2021). Mega11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022–3027.
  • Tan, L., Liao, Y., Fan, J., Zhang, Y., Mao, X., Sun, Y., Song, C., Qiu, X., Meng, C. & Ding, C. (2016). Prediction and identification of novel IBV S1 protein derived CTL epitopes in chicken. Vaccine, 34, 380–386.
  • Thayer, S.G. & Beard, C.W. (2008). Serologic procedures. In A Laboratory Manual for the isolation and identification of Avian pathogens (5th ed., pp. 255–266). The American Association of Avian Pathologist.
  • Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G. & Monne, I. (2016). S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification. Infection, Genetics and Evolution, 39, 349–364.
  • Villarreal, L.Y.B., Brandão, P.E., Chacón, J.L., Saidenberg, A.B.S., Assayag, M.S., Jones, R.C. & Ferreira, A.J.P. (2007). Molecular characterization of infectious bronchitis virus strains isolated from the enteric contents of Brazilian laying hens and broilers. Avian Diseases, 51, 974–978.
  • Vita, R., Mahajan, S., Overton, J.A., Dhanda, S.K., Martini, S., Cantrell, J.R., Wheeler, D.K., Sette, A. & Peters, B. (2019). The immune epitope database (IEDB): 2018 update. Nucleic Acids Research, 47, D339–D343.
  • Wang, C.H. & Huang, Y.C. (2000). Relationship between serotypes and genotypes based on the hypervariable region of the S1 gene of infectious bronchitis virus. Archives of Virology, 145, 291–300.
  • Wang, L., Junker, D. & Collisson, E.W. (1993). Evidence of natural recombination within the S1 gens of infectious bronchitis virus. Virology, 192, 710–716.
  • Wang, L., Parr, R.L., King, D.J. & Collisson, E.W. (1995). A highly conserved epitope on the spike protein of infectious bronchitis virus. Archives of Virology, 140, 2201–2213.
  • Woodruff, D.S. (2001). Populations, species, and conservation genetics. In S.A. Levin (Ed.), Encyclopedia of Biodiversity (pp. 811–829). New York: Elsevier. https://www.sciencedirect.com/science/article/pii/B0122268652003552
  • Worthington, K.J., Currie, R.J.W. & Jones, R.C. (2008). A reverse transcriptase-polymerase chain reaction survey of infectious bronchitis virus genotypes in Western Europe from 2002 to 2006. Avian Pathology, 37, 247–257.
  • Xu, C., Zhao, J., Hu, X. & Zhang, G. (2007). Isolation and identification of four infectious bronchitis virus strains in China and analyses of their S1 glycoprotein gene. Veterinary Microbiology, 122, 61–71.
  • Yang, H., Peng, Q., Lang, Y., Du, S., Cao, S., Wu, R., Zhao, Q., Huang, X., Wen, Y., Lin, J., Zhao, S. & Yan, Q. (2022). Phylogeny, evolution, and transmission dynamics of canine and feline coronaviruses: a retro-prospective study. Frontiers in Microbiology, 13, 850516.
  • Zhang, Y., Wang, H.-N., Wang, T., Fan, W.-Q., Zhang, A.-Y., Wei, K., Tian, G.-B. & Yang, X. (2010). Complete genome sequence and recombination analysis of infectious bronchitis virus attenuated vaccine strain H120. Virus Genes, 41, 377–388.
  • Zhao, Y., Zhang, H., Zhao, J., Zhong, Q., Jin, J.-H. & Zhang, G.-Z. (2016). Evolution of infectious bronchitis virus in China over the past two decades. Journal of General Virology, 97, 1566–1574.
  • Zheng, J., Yamada, Y., Fung, T.S., Huang, M., Chia, R. & Liu, D.X. (2018). Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture. Virology, 513, 65–74.
  • Zhu, F., Lu, M., Huang, Q., Huang, Y., Yang, S., Cui, Y., Liu, C., Tan, L., Kong, Z. & Xu, C. (2016). Interactive mechanism between avian infectious bronchitis S1 protein T cell peptide and avian MHC I molecule. Virus Research, 215, 76–83.
  • Zou, N., Xia, J., Wang, F., Duan, Z., Miao, D., Yan, Q., Cao, S., Wen, X., Liu, P. & Huang, Y. (2015). Two novel neutralizing antigenic epitopes of the s1 subunit protein of a QX-like avian infectious bronchitis virus strain Sczy3 as revealed using a phage display peptide library. Veterinary Immunology and Immunopathology, 168, 49–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.