129
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Novel lncRNA 803 related to Marek’s disease inhibits apoptosis of DF-1 cells

, , , , , , , & show all
Pages 229-241 | Received 16 Aug 2023, Accepted 02 Feb 2024, Published online: 29 Feb 2024

References

  • Ahmadpour, S.T., Orre, C., Bertevello, P.S., Mirebeau-Prunier, D., Dumas, J.F. & Desquiret-Dumas, V. (2023). Breast cancer chemoresistance: insights into the regulatory role of lncRNA. International Journal of Molecular Sciences, 24, 15897.
  • Bai, H., He, Y., Ding, Y., Carrillo, J.A., Selvaraj, R.K., Zhang, H., Chen, J. & Song, J. (2019). Allele-specific expression of CD4(+) T cells in response to Marek's disease virus infection. Genes, 10, 718.
  • Bertzbach, L.D., Conradie, A.M., You, Y. & Kaufer, B.B. (2020). Latest insights into Marek's disease virus pathogenesis and tumorigenesis. Cancers, 12, 647.
  • Boutelle, A.M. & Attardi, L.D. (2021). P53 and tumor suppression: it takes a network. Trends in Cell Biology, 31, 298–310.
  • Calnek, B.W. (2001). Pathogenesis of Marek's disease virus infection. Current Topics in Microbiology and Immunology, 255, 25–55.
  • Churchill, A.E., Payne, L.N. & Chubb, R.C. (1969). Immunization against Marek's disease using a live attenuated virus. Nature, 221, 744–747.
  • Dang, L., Teng, M., Li, H.Z., Ma, S.M., Lu, Q.X., Hao, H.F., Zhao, D., Zhou, E.M., Zhang, G.P. & Luo, J. (2017). Marek's disease virus type 1 encoded analog of miR-155 promotes proliferation of chicken embryo fibroblast and DF-1 cells by targeting hnRNPAB. Veterinary Microbiology, 207, 210–218.
  • Deng, X., Li, X., Shen, Y., Qiu, Y., Shi, Z., Shao, D., Jin, Y., Chen, H., Ding, C., Li, L., Chen, P. & Ma, Z. (2010). The Meq oncoprotein of Marek's disease virus interacts with p53 and inhibits its transcriptional and apoptotic activities. Virology Journal, 7, 348.
  • Dong, K., Chang, S., Xie, Q., Zhao, P. & Zhang, H. (2019). RNA sequencing revealed differentially expressed genes functionally associated with immunity and tumor suppression during latent phase infection of a vv + MDV in chickens. Scientific Reports, 9, 14182.
  • Endo, M., Nishioka, T., Numazaki, K., Hasegawa, H., Takahashi, T., Sugawara, S. & Tada, H. (2022). Reactivation of p53 by RITA induces apoptosis in human oral squamous cell carcinoma cells. Anticancer Research, 42, 2931–2937.
  • Figueroa, T., Boumart, I., Coupeau, D. & Rasschaert, D. (2016). Hyperediting by ADAR1 of a new herpesvirus lncRNA during the lytic phase of the oncogenic Marek's disease virus. The Journal of General Virology, 97, 2973–2988.
  • Garcia-Camacho, L., Schat, K.A., Brooks, R., Jr. & Bounous, D.I. (2003). Early cell-mediated immune responses to Marek's disease virus in two chicken lines with defined major histocompatibility complex antigens. Veterinary Immunology and Immunopathology, 95, 145–153.
  • Ghafouri-Fard, S., Hussen, B.M., Gharebaghi, A., Eghtedarian, R. & Taheri, M. (2021). LncRNA signature in colorectal cancer. Pathology, Research and Practice, 222, 153432.
  • Ghodke, I., Remisova, M., Furst, A., Kilic, S., Reina-San-Martin, B., Poetsch, A.R., Altmeyer, M. & Soutoglou, E. (2021). AHNAK controls 53BP1-mediated p53 response by restraining 53BP1 oligomerization and phase separation. Molecular Cell, 81, 2596–2610.
  • Han, B., He, Y., Zhang, L., Ding, Y., Lian, L., Zhao, C., Song, J. & Yang, N. (2017). Long intergenic non-coding RNA GALMD3 in chicken Marek's disease. Scientific Reports, 7, 10294.
  • Han, S., Zhao, S., Zhao, Y., Liu, M., Han, L. & Han, L. (2023). The novel lncRNA-9802/miR-1646 axis affects cell proliferation of DF-1 by regulating Bax/Bcl-2 signaling pathway. Research in Veterinary Science, 164, 105047.
  • Hassan, M.S.H. & Abdul-Careem, M.F. (2020). Avian viruses that impact table egg production. Animals, 10, 1747.
  • He, Y., Ding, Y., Zhan, F., Zhang, H., Han, B., Hu, G., Zhao, K., Yang, N., Yu, Y., Mao, L. & Song, J. (2015). The conservation and signatures of lincRNAs in Marek's disease of chicken. Scientific Reports, 5, 15184.
  • He, Y., Han, B., Ding, Y., Zhang, H., Chang, S., Zhang, L., Zhao, C., Yang, N. & Song, J. (2019). Linc-GALMD1 regulates viral gene expression in the chicken. Frontiers in Genetics, 10, 1122.
  • Heidari, M. & Delekta, P.C. (2017). Transcriptomic analysis of host immune response in the skin of chickens infected with Marek's disease virus. Viral Immunology, 30, 377–387.
  • Kennedy, D.A., Cairns, C., Jones, M.J., Bell, A.S., Salathé, R.M., Baigent, S.J., Nair, V.K., Dunn, P.A. & Read, A.F. (2017). Industry-wide surveillance of Marek's disease virus on commercial poultry farms. Avian Diseases, 61, 153–164.
  • Kim, T. & Hearn, C. (2022). Vaccinal efficacy of recombinant Marek's disease vaccine 301B/1 expressing chicken interleukin-15. Avian Diseases, 66, 79–84.
  • Lee, L.F., Zhang, H., Heidari, M., Lupiani, B. & Reddy, S.M. (2011). Evaluation of factors affecting vaccine efficacy of recombinant Marek's disease virus lacking the Meq oncogene in chickens. Avian Diseases, 55, 172–179.
  • Leng, N., Dawson, J.A., Thomson, J.A., Ruotti, V., Rissman, A.I., Smits, B.M., Haag, J.D., Gould, M.N., Stewart, R.M. & Kendziorski, C. (2013). EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 29, 1035–1043.
  • Lian, X., Bao, C., Li, X., Zhang, X., Chen, H., Jung, Y.S. & Qian, Y. (2019). Marek's disease virus disables the ATR-Chk1 pathway by activating STAT3. Journal of Virology, 93, e02290–02218.
  • Liu, A.L., Liu, C.J., Zhang, Y.P., Li, J.M., Shi, W.S., Yan, F.H., Zhang, F. & Cheng, Z.W. (2009). Mutational analysis of Meq, RLORF4, RLORF12 and 132bpr genes of epidemic Marek's disease virus strains highly passaged on chicken embryo fibroblast. Bing Du Xue Bao (Chinese Journal of Virology), 25, 368–375.
  • Liu, C.Y., Zhang, Y.H., Li, R.B., Zhou, L.Y., An, T., Zhang, R.C., Zhai, M., Huang, Y., Yan, K.W., Dong, Y.H., Ponnusamy, M., Shan, C., Xu, S., Wang, Q., Zhang, Y.H., Zhang, J. & Wang, K. (2018). LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nature Communications, 9, 29.
  • Liu, J.L., Teng, M., Zheng, L.P., Zhu, F.X., Ma, S.X., Li, L.Y., Zhang, Z.H., Chai, S.J., Yao, Y. & Luo, J. (2023). Emerging hypervirulent Marek's disease virus variants significantly overcome protection conferred by commercial vaccines. Viruses, 15, 1434.
  • Mirman, Z. & de Lange, T. (2020). 53BP1: a DSB escort. Genes & Development, 34, 7–23.
  • Miyamoto, K., Minegaki, T., Hirano, S., Hayashi, I., Tsujimoto, M. & Nishiguchi, K. (2020). Olaparib potentiates anticancer drug cytotoxicity via 53BP1 in oesophageal squamous cell carcinoma cells. Anticancer Research, 40, 813–823.
  • Morales, J.C., Franco, S., Murphy, M.M., Bassing, C.H., Mills, K.D., Adams, M.M., Walsh, N.C., Manis, J.P., Rassidakis, G.Z., Alt, F.W. & Carpenter, P.B. (2006). 53BP1 and p53 synergize to suppress genomic instability and lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 3310–3315.
  • Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628.
  • Nishitha, Y., Priyanka, E., Vamshi Krishna, S. & Kannaki, T.R. (2021). Co-infection of Marek's disease virus with different oncogenic immunosuppressive viruses in chicken flocks. Virusdisease, 32, 804–809.
  • Pessina, F., Giavazzi, F., Yin, Y., Gioia, U., Vitelli, V., Galbiati, A., Barozzi, S., Garre, M., Oldani, A., Flaus, A., Cerbino, R., Parazzoli, D., Rothenberg, E. & d'Adda di Fagagna, F. (2019). Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nature Cell Biology, 21, 1286–1299.
  • Qu, J., Wang, X., Jiang, Y., Lv, X., Song, X., He, H. & Huan, Y. (2020). Optimizing 5-aza-2'-deoxycytidine treatment to enhance the development of porcine cloned embryos by inhibiting apoptosis and improving DNA methylation reprogramming. Research in Veterinary Science, 132, 229–236.
  • Rasschaert, P., Figueroa, T., Dambrine, G., Rasschaert, D. & Laurent, S. (2016). Alternative splicing of a viral mirtron differentially affects the expression of other microRNAs from its cluster and of the host transcript. RNA Biology, 13, 1310–1322.
  • Shi, W.S., Liu, C.J., Zhang, Y.P., Qin, Y.A., Zhang, X.W., Li, J.M. & Chen, H.Y. (2008). Cloning and sequence analysis of the Meq gene of 4 Marek's disease virus isolates from China. Bing Du Xue Bao (Chinese Journal of Virology), 24, 117–125.
  • Stik, G., Laurent, S., Coupeau, D., Coutaud, B., Dambrine, G., Rasschaert, D. & Muylkens, B. (2010). A p53-dependent promoter associated with polymorphic tandem repeats controls the expression of a viral transcript encoding clustered microRNAs. RNA, 16, 2263–2276.
  • Sun, G.R., Zhang, Y.P., Zhou, L.Y., Lv, H.C., Zhang, F., Li, K., Gao, Y.L., Qi, X.L., Cui, H.Y., Wang, Y.Q., Gao, L., Pan, Q., Wang, X.M. & Liu, C.J. (2017). Co-Infection with Marek's disease virus and reticuloendotheliosis virus increases illness severity and reduces Marek's disease vaccine efficacy. Viruses, 9, 158.
  • Sunkaraa, L., Ahmad, S.M. & Heidari, M. (2019). RNA-seq analysis of viral gene expression in the skin of Marek's disease virus infected chickens. Veterinary Immunology and Immunopathology, 213, 109882.
  • Tao, W., Li, Z., Nabi, F., Hu, Y., Hu, Z. & Liu, J. (2021). Penthorum chinense pursh compound ameliorates AFB1-induced oxidative stress and apoptosis via modulation of mitochondrial pathways in broiler chicken kidneys. Frontiers in Veterinary Science, 8, 750937.
  • Teng, M., Zhu, Z.J., Yao, Y., Nair, V., Zhang, G.P. & Luo, J. (2023). Critical roles of non-coding RNAs in lifecycle and biology of Marek's disease herpesvirus. Science China Life Sciences, 66, 251–268.
  • Venkatesh, J., Wasson, M.D., Brown, J.M., Fernando, W. & Marcato, P. (2021). LncRNA-miRNA axes in breast cancer: novel points of interaction for strategic attack. Cancer Letters, 509, 81–88.
  • Wang, J., Thomas, H.R., Li, Z., Yeo, N.C.F., Scott, H.E., Dang, N., Hossain, M.I., Andrabi, S.A. & Parant, J.M. (2021). Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis. Cell Death & Disease, 12, 659.
  • Wei, Y., Zhu, Z., Hu, H., Guan, J., Yang, B. & Zhao, H. (2022). Eupaformosanin induces apoptosis and ferroptosis through ubiquitination of mutant p53 in triple-negative breast cancer. European Journal of Pharmacology, 924, 174970.
  • Xue, L., Li, J., Lin, Y., Liu, D., Yang, Q., Jian, J. & Peng, J. (2021). M(6) A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer. Journal of Cellular Physiology, 236, 2649–2658.
  • Xue, L.X., Chen, S.F., Xue, S.X., Liu, P.D. & Liu, H.B. (2022). LncRNA TUG1 compromised neuronal mitophagy in cerebral ischemia/reperfusion injury by targeting sirtuin 1. Cell Biology and Toxicology, 38, 1121–1136.
  • You, Z., Zhang, Q., Liu, C., Song, J., Yang, N. & Lian, L. (2019). Integrated analysis of lncRNA and mRNA repertoires in Marek's disease infected spleens identifies genes relevant to resistance. BMC Genomics, 20, 245.
  • Zhang, Y., Dong, X., Guo, X., Li, C., Fan, Y., Liu, P., Yuan, D., Ma, X., Wang, J., Zheng, J., Li, H. & Gao, P. (2023). LncRNA-BC069792 suppresses tumor progression by targeting KCNQ4 in breast cancer. Molecular Cancer, 22, 41.
  • Zhang, Z., Zhang, S., Wang, G., Feng, S., Han, K., Han, L. & Han, L. (2021). Role of microRNA and long non-coding RNA in Marek's disease tumorigenesis in chicken. Research in Veterinary Science, 135, 134–142.
  • Zhu, F. & Wang, Y. (2022). Fumonisin B(1) induces immunotoxicity and apoptosis of chicken splenic lymphocytes. Frontiers in Veterinary Science, 9, 898121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.