43
Views
0
CrossRef citations to date
0
Altmetric
Original Article

The relationship between vascular expansion of the aorta and pulmonary artery and the genesis of the impedance cardiogram using the technique of sonomicrometry

, , &
Pages 419-427 | Published online: 09 Jul 2009

References

  • Kubicek W. G., Patterson R. P., Witsoe D. A. Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. Annals of the New York Academy of Science 1970; 170: 724–732
  • Penny B. C., Patwordhan N. A., Wheeler H. B. Simplified electrode array for impedance cardiography. Medical & Biological Engineering & Computing 1985; 23: 1–7
  • Kubicek W. G., Kottke F. J., Ramos M. U., Patterson R. P., Witsoe D. A., Labree J. W., Remole W., Layman T. E., Schoening H., Garamella J. T. The Minnesota impedance cardiograph—Theory and applications. Biomedical Engineering 1974; 9: 410–416
  • Ravi Shankar T. M., Webster J. G., Shao S. Y. The contribution of vessel volume change and blood resistivity change to electrical impedance pulse. IEEE Transactions on Biomedical Engineering 1985; BME 32: 192–198
  • Sramek B. B., Rose D. M., Miyamota A. Stroke volume equation with a linear base impedance model and its accuracy as compared to thermodilution and magnetic flow techniques in humans and animals. Proceedings of the 6th International Conference on Bioimpedance, ZadarYugoslavia, 1983; 38
  • Bernstein D. P. A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Critical Care Medicine 1986; 14: 904–909
  • Muzi M., Ebert T. J., Tristani F. E., Jeutter D. C., Barney J. A., Smith J. J. Determination of cardiac output using ensemble-averaged impedance cardiograms. Journal of Applied Physiology 1985; 58: 200–205
  • Osypka M. J., Schafer E. E. Impedance cardiography: Advancement in system design. Paper presented at the 10th International Conference on Electrical Bioimpedance, BarcelonaSpain, April, 5 – 91998, 437–440
  • Naggar C. Z., Dobnik D. B., Fiessas A. P., Keipke B. J., Ryan T. J. Accuracy of the stroke index as determined by the transthoracic electrical impedance method. Anesthesiology 1975; 42: 201–205
  • Kinnen E. Cardiac output from transthoracic impedance variations. Annals of the New York Academy of Sciences 1970; 170: 747–756
  • Pianosi P. T. Impedance cardiography accurately measures cardiac output during exercise in children with cystic fibrosis. Chest 1997; 111: 333–337
  • Hatcher D. D., Srb O. D. Comparison of two noninvasive techniques for estimating cardiac output during exercise. Journal of Applied Physiology 1986; 61: 155–159
  • Niizeki K., Miyamota Y., Doi K. A comparison between cardiac output determined by impedance cardiography and rebreathing method during exercise in man. The Japanese Journal of Physiology 1989; 39: 441–446
  • Bogaard H. J., Haversma W. B., Horsch J. L., Woltjer H. H., Postmus P. E., Devries P. M. Non-invasive assessment of cardiac output during exercise in chronic obstructive pulmonary disease: comparison of the CO2-rebreathing method and electrical impedance cardiography. Physiological Measurement 1997; 18: 327–338
  • Baker L. E., Hill D. W., Pate T. D. Comparison of several pulse-pressure techniques for monitoring stroke volume. Medical & Biological Engineering 1974; 12: 81–89
  • Denniston J. K., Maher J. J.T., Reeves J. T., Cruz A. Measurement of cardiac output by electrical impedance at rest and during exercise. Journal of Applied Physiology 1976; 40: 91–95
  • Milson I., Forssman L., Biber B., Dottori O., Sivertsson R. Measurement of cardiac stroke volume during cesarean section: a comparison between impedance cardiography and the dye dilution technique. Acta Anaesthesiologica Scandinavia 1983; 27: 421–426
  • Judy W. V., Langley F. M., McCowen K. D., Stinnett D. M., Baker L. E., Johnson P. C. Comparative evaluation of the thoracic impedance and isotrope dilution methods for measuring cardiac output. Aerospace Medicine 1969; 40: 532–536
  • Woltjer H. H., Bogaard H. J., Brohzwaer J. G., de Cock C. C., De Vries P. M. Prediction of pulmonary capillary wedge pressure and assessment of stroke volume by non invasive impedance cardiography. American Heart Journal 1997; 134: 450–455
  • Miles D. S., Gothshall R. W., Sexon W. R. Evaluation of impedance cardiography in the canine pup. Journal of Applied Physiology 1986; 60: 260–265
  • Hayes J. K., Smith K. W., Baker L. E. Determination of cardiac function using esophageal impedance cardiography. Anesthesia and Analgesia 1988; 67: S88
  • Koobi T., Kaukinen S., Turjanmaa V. M. Cardiac output can be reliably measured noninvasively after coronary artery bypass grafting operation. Critical Care Medicine 1999; 27: 2206–2211
  • Baker L. E., Judy W. V., Geddes L. A., Langley F. M., Hill D. W. The measurement of cardiac output by means of electrical impedance. Cardiovascular Research Centre Bulletin 1971; 94: 135–145
  • Ehlert R. E., Schmidt H. O. An experimental evaluation of the impedance cardiographic and electromagnetic measurements of stroke volumes. Journal of Medical Engineering & Technology 1982; 6: 193–200
  • Aust P. E., Blez G. G., Blez G., Koch W. Comparison of impedance cardiography and echocardiography for measurement of stroke volume. European Journal of Pharmacology 1982; 23: 475–477
  • van der Meer N. J., Vonk Noordegraaf A., Kamp O., Devries D. M. Noninvasive measurement of cardiac output: Two methods compared in patients with mitral regurgitation. Angiology 1999; 20: 95–101
  • Cybulski G., Miskiewicz Z., Szulc J., Torbicki A., Pasierski T. A comparison between the automatized impedance cardiography and pulse-wave Doppler echocardiography methods for measurement of stroke volume (SV) and systolic time intervals (STI). Journal of Physiology and Pharmacology 1993; 44: 251–258
  • Ebert T. J., Elkborg D. L., Ventrovec G. M., Cowley M. J. Impedance cardiograms reliably estimate beat-by-beat changes in left ventricular stroke volume in humans. Cardiovascular Research 1984; 18: 354–360
  • Cremer M. Ueber die Registrierung mechanischer Vorgange auf elektrischem Wege. Speziell mit Hilfe des Saitengalvanometers und Saitenelektrometers. Munchener Medizinische Wochensschrift 1907; 54: 1629–1630
  • Atzler E., Lehmann G. Uber ein neues Verfahren zur Darstellung der Hertztatigkeit (Dielektrographie). Arbeitsphysiologie 1932; 5: 636–680
  • Bonjer F. H., van den Berg J. W., Direden M. N.J. The origin of the variations of body impedance occurring during the cardiac cycle. Circulation 1952; 6: 415–420
  • Geddes L. A., Baker L. E. Thoracic impedance changes following saline injection into right and left ventricles. Journal of Applied Physiology 1972; 33: 278–281
  • Kennedy J. K., Debakey M. E., Akers W. W., Ross J. N., Jr, O'Bannon W., Baker L. E., Greenburg S. D., Wieting D. W., Lewis C. W., Adachi M., Alfrey C. P., Jr, Spargo W. J., Fuqua J. M., Jr. Progress toward an orthotropic cardiac prosthesis. Biomater Med Devices Artif Organs 1973; 1: 3–56
  • Baker L. E., Mistry G. D. Assessment of cardiac function by electrical impedance. Proceedings of the 5th International Conference on Electrical Bioimpedance, TokyoJapan, 1981; 7
  • Mitchell M. M., Newbower R. S. Intrathoracic electrical impedance measurements from an esophageal probe. American Journal of Physiology 1979; 5: R168–R174
  • Nyboer J. Electrical impedance plethysmography. Medical Physics, O. Glasser. Year Book Publishers, Chicago 1944; 1: 744
  • Scordato R. E. Thoracic impedance measurements from the esophagus. Massachusetts Institute of Technology, 1972, Masters Thesis
  • Wetterer E. Flow and pressure in the arterial system, their hemodynamic relationship and the principles of their measurement. Minnesota Medicine 1954; 37: 77–86
  • Spencer M. P., Dennison A. B. The aortic flow probe pulse related to differential pressure. Circulation Research 1956; 4: 476–484
  • Patterson R., Kubicek W. G., Witsoe D. A. Studies on the effect of controlled volume change on the thoracic electrical impedance. Medical and Biological Computing 1978; 16: 531–536
  • Patterson R. P. Sources of the thoracic cardiogenic electrical impedance signal as determined by a model. Medical & Biological Engineering & Computing 1985; 23: 411–417
  • Lewis G. K. An investigation into the origin of the impedance cardiogram. Worchester Polytechnic Institute, 1974, PhD thesis
  • Kubicek W. G. On the source of peak first time derivative (dZ/dt) during impedance cardiography. Annals of Biomedical Engineering 1989; 19: 459–462
  • Ito H., Yamakoshi K., Yamada A. Physiological and fluid dynamic investigations of the transthoracic impedance plethsmography method for measuring cardiac output. Part II: Analysis of the transthoracic impedance by perfusing dogs. Medical & Biological Engineering 1976; 14: 373–378
  • Harley A. Proceedings: Observations on the origin of the impedance cardiogram. British Heart Journal 1975; 37: 550
  • Kim D. W., Baker L. E., Pearce J. A., Kim W K. Origins of the impedance change in impedance cardiography by a three-dimensional finite element model. IEEE Transactions on Biomedical Engineering 1988; 35: 993–1000

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.