26
Views
1
CrossRef citations to date
0
Altmetric
Articles

Development of a method to quantitatively monitor the effect of inhibition of nitric oxide synthase on tumour vascular activity using dynamic contrast-enhanced computed tomography

, , , , &
Pages 460-469 | Published online: 13 Aug 2009

References

  • Folkman J. Tumor angiogenesis: therapeutic implications. New England Journal of Medicine 1971; 285: 1182–1186
  • Miller J. C., Pien H. H., Sahani D., Sorensen A. G., Thrall J. H. Imaging angiogenesis: applications and potential for drug development. Journal of National Cancer Institute 2005; 97: 172–187
  • Alderton W. K., Cooper C. E., Knowles R. G. Nitric oxide synthases: structure, function and inhibition. Biochemical Journal 2001; 357: 593–615
  • Murohata T., Asahara T., Silver M., Bauters C., Masuda H., Kalka C., Kearney M., Chen D., Symes J. F., Fishmen M. C., Huang P. L., Isner J. M. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. Journal of Clinical Investigation 1998; 101: 2567–2578
  • Papapetropoulos A., Garcia-Cardena G., Madri J. A., Sessa W. C. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. Journal of Clinical Investigation 1997; 100: 3131–3139
  • Gratton J. P., Lin M. I., Yu J., Weiss E. D., Jiang Z. L., Fairchild T. A., Iwakiri Y., Groszmann R., Claffey K. P., Cheng Y. C., Sessa W. C. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 2003; 4: 31–39
  • Hofseth L. J., Hussain S. P., Wogan G. N., Harris C. C. Nitric oxide in cancer and chemoprevention. Free Radical Biology and Medicine 2003; 34: 955–968
  • Crowell J. A., Steele V. E., Sigman C. C., Fay J. R. Is inducible nitric oxide synthase a target for chemoprevention. Molecular Cancer Therapeutics 2003; 2: 815–823
  • Torzer G. M., Prise V. E., Chaplin D. J. Inhibition of nitric oxide synthase induces a selective reduction in tumor blood flow that is reversible with L-arginine. Cancer Research 1997; 57: 948–955
  • Kan Z., Phongkitkarun S., Kobayashi S., Tang Y., Ellis L. M., Lee T. Y., Charnsangavej C. Functional CT for quantifying tumor perfusion in antiangiogenic therapy in a rat model. Radiology 2005; 237: 151–158
  • Hakime A., Peddi H., Hines-Peralta A. U., Wilcox C. J., Kruskal J., Lin S., de Baere T., Raptopoulos V. D., Goldberg S. N. CT perfusion for determination of pharmacologically mediated blood flow changes in an animal tumor model. Radiology 2007; 243: 712–719
  • Judd R. M., Reeder B. S., May-Newman K. Effects of water exchange on the measurement of myocardial perfusion using paramagnetic contrast agents. Magnetic Resonance in Medicine 1999; 41: 334–342
  • Lapin G. D., Munson R. J., Groothuis D. R. Noninvasive CT determination of arterial blood concentration of meglumine iothalamate. Journal of Computer Assisted Tomography 1993; 17: 108–114
  • Lee T.-Y. Functional CT: physiological models. Trends in Biotechnology 2002; 20: S3–S10
  • Koh T. S., Tan C. K., Cheong L. H., Lim C. C. Cerebral perfusion mapping using a robust and efficient method for deconvolution analysis of dynamic contrast-enhanced images. Neuroimage 2006; 32: 643–653
  • Jerosch-Herold M., Seethamraju R. T., Swingen C. M., Wilke N. M., Stillman A. E. Analysis of myocardial perfusion MRI. Journal of Magnetic Resonance Imaging 2004; 19: 758–770
  • Ostergaard L., Weisskoff R. M., Chesler D. A., Gyldensted C., Rosen B. R. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magnetic Resonance in Medicine 1996; 36: 715–725
  • Tofts P. S., Kermode A. G. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. fundamental concepts. Magnetic Resonance in Medicine 1991; 17: 357–367
  • Parker G. J.M., Roberts C., Macdonald A., Buonaccorsi G. A., Cheung S., Buckley D. L., Jackson A., Watson Y., Davies K., Jayson G. C. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine 2006; 56: 993–1000
  • Murase K., Shinohara M., Yamazaki Y. Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Physics in Medicine and Biology 2001; 46: 3147–3159
  • Meier P., Zierler K. L. On the theory of the indicator-dilution method for measurement of blood flow and volume. Journal of Applied Physiology 1954; 6: 731–744
  • Murase K., Kikuchi K., Miki H., Shimizu T., Ikezoe J. Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imaging. Journal of Magnetic Resonance Imaging 2001; 13: 797–806
  • Cenic A., Nabavi D. G., Craen R. A., Gelb A. W., Lee T-Y. Dynamic CT measurement of cerebral blood flow: a validation study. American Journal of Neuroradiology 1999; 20: 63–73
  • Murase K., Tachibana A., Kusakabe Y., Matsuura R., Miyazaki S. A method for quantitative assessment of renal function using dynamic contrast-enhanced computed tomography: evaluation of drug-induced nephrotoxicity in rats. Medical Physics 2008; 35: 5768–5776
  • Ng Q. S., Goh V., Milner J., Stratford M. R., Folkes L. K., Tozer G. M., Saunders M. I., Hoskin P. J. Effect of nitric-oxide synthesis on tumour blood volume and vascular activity: a phase I study. Lancet Oncology 2007; 8: 111–118
  • Tozer G. M., Prise V. E., Wilson J., Cemazar M., Shan S., Dewhirst M. W., Barber P. R., Vojnovic B., Chaplin D. J. Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Research 2001; 61: 6413–6422
  • Janssen B. J.A., Celle T. D., Debets J. J., Brouns A. E., Callahan M. F., Smith T. L. Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology Heart and Circulatory Physiology 2004; 285: H1618–H1624
  • Gardiner S. M., Compton A. M., Kemp P. A., Bennett T. Regional and cardiac haemodynamic effects of NG-nitro-L-arginine methyl ester in conscious, Long Evans rats. British Journal of Pharmacology 1990; 101: 625–631
  • Morcos S. K., Dawson P., Pearson J. D., Jeremy J. Y., Davenport A. P., Yates M. S., Tirone P., Cipolla P., De Haen C., Muschick P., Krause W., Refsum H., Emery C. J., Liss P., Nygren A., Haylor J., Pugh N. D., Karlsson J. O.G. The haemodynamic effects of iodinated water soluble radiographic contrast media: a review. European Journal of Radiology 1998; 29: 31–46
  • Limbruno U., Petronio A. S., Amoroso G., Baglini R., Paterni G., Merelli A., Mariotti R., De Caterina R., Mariani M. The impact of coronary artery disease on the coronary vasomotor response to nonionic contrast media. Circulation 2000; 101: 491–497
  • Murase K., Miyazaki S. Error analysis of tumor blood flow measurement using dynamic contrast-enhanced data and model-independent deconvolution analysis. Physics in Medicine and Biology 2007; 52: 2791–2805
  • Pahernik S., Griebel J., Botzlar A., Gneiting T., Brandl M., Dellian M., Goetz A. E. Quantitative imaging of tumour blood flow by contrast-enhanced magnetic resonance imaging. British Journal of Cancer 2001; 85: 1655–1663
  • Sugawara Y., Murase K., Kikuchi K., Sakayama K., Miyazaki T., Kajihara M., Miki H., Mochizuki T. Measurement of tumor blood flow using dynamic contrast-enhanced magnetic resonance imaging and deconvolution analysis: a preliminary study in musculoskeletal tumors. Journal of Computer Assisted Tomography 2006; 30: 983–990
  • Chaplin D. J. Hydralazine-induced tumor hypoxia: a potential target for cancer chemotherapy. Journal of National Cancer Institute 1989; 81: 618–622
  • Bezdek J. C., Hathaway R. J., Sabin M. J., Tucker W. T. Convergence theory for fuzzy c-means: counterexamples and repairs. IEEE Transactions on Systems, Man, and Cybernetics 1987; 17: 873–877

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.