702
Views
41
CrossRef citations to date
0
Altmetric
Review Article

Critical factors and their impact on bioelectrical impedance analysis in children: a review

, , , &
Pages 22-35 | Received 19 Apr 2016, Accepted 30 Jun 2016, Published online: 20 Sep 2016

References

  • Earthman C, Traughber D, Dobratz J, et al. Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutr Clin Pract. 2007;22:389–405.
  • Earthman CP. Body composition tools for assessment of adult malnutrition at the bedside: a tutorial on research considerations and clinical applications. J Parenter Enteral Nutr. 2015;39:787–822.
  • NIH 1996. Bioelectrical impedance analysis in body composition measurement: national institutes of health technology assessment conference statement. Am J Clin Nutr. 1996;64:524S–532S.
  • Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004;23:1430–1453.
  • IAEA. Body composition assessment from birth to two years of age. 2013 [cited 2016 Jun 27]. Available from: http://www-pub.iaea.org/books/IAEABooks/8856/Body-Composition-Assessment-from-Birth-to-Two-Years-of-Age.
  • Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis-part I: review of principles and methods. Clin Nutr. 2004;23:1226–1243.
  • Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr. 1987;46:537–556.
  • IAEA. Introduction to body composition assessment using the deuterium dilution technique with analysis of saliva samples by fourier transform infra-red spectrometry [Internet]. 2011 [cited 2016 Jun 27]. Available from: http://www-pub.iaea.org/books/IAEABooks/8369/Introduction-to-Body-Composition-Assessment-Using-the-Deuterium-Dilution-Technique-with-Analysis-of-Saliva-Samples-by-Fourier-Transform-Infra-red-Spectrometry.
  • IAEA. Introduction to body composition assessment using the deuterium dilution technique with analysis of urine samples by isotope ratio mass spectrometry [Internet]. 2011 [cited 2016 Jun 27]. Available from: http://www-pub.iaea.org/books/IAEABooks/8370/Introduction-to-Body-Composition-Assessment-Using-the-Deuterium-Dilution-Technique-with-Analysis-of-Urine-Samples-by-Isotope-Ratio-Mass-Spectrometry.
  • Chumlea WC, Schubert CM, Sun SS, et al. A review of body water status and the effects of age and body fatness in children and adults. J Nutr Health Aging. 2007;11:111–118.
  • Pethig R. Dielectric and electronic properties of biological materials. New York: John Wiley & Sons; 1979.
  • Nyboer J. Electrical impedance plethysmography; a physical and physiologic approach to peripheral vascular study. Circulation. 1950;2:811–821.
  • Thomasset MA. Bioelectric properties of tissue. Lyon Med. 1962;94:107–118.
  • Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Physiol. 1969;27:531–534.
  • Nyboer J. Electrorheometric properties of tissues and fluids. Ann N Y Acad Sci. 1970;170:410–420.
  • Jenin P, Lenoir J, Roullet C, et al. Determination of body fluid compartments by electrical impedance measurements. Aviat Space Environ Med. 1975;46:152–155.
  • Lukaski HC, Johnson PE, Bolonchuk WW, et al. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985;41:810–817.
  • Stroud DB. What does bioimpedance measure? In Proceedings of the 2nd International Conference on Bioelectromagnetism, Melbourne, Australia; 1998. p. 4343.
  • Ellis KJ, Bell SJ, Chertow GM, et al. Bioelectrical impedance methods in clinical research: a follow-up to the NIH technology assessment conference. Nutrition. 1999;15:874–880.
  • Hannan WJ, Cowen SJ, Fearon KC, et al. Evaluation of multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin Sci. 1994;86:479–485.
  • Yamada Y, Watanabe Y, Ikenaga M, et al. Comparison of single- or multifrequency bioelectrical impedance analysis and spectroscopy for assessment of appendicular skeletal muscle in the elderly. J Appl Physiol. 2013;115:812–818.
  • Matthie JR. Bioimpedance measurements of human body composition: critical analysis and outlook. Expert Rev Med Devices. 2008;5:239–261.
  • Ellis KJ, Shypailo RJ, Wong WW. Measurement of body water by multifrequency bioelectrical impedance spectroscopy in a multiethnic paediatric population. Am J Clin Nutr. 1999;70:847–853.
  • Ellis KJ, Wong WW. Human hydrometry: comparison of multifrequency bioelectrical impedance with 2H2O and bromine dilution. J Appl Physiol. 1998;85:1056–1062.
  • Dehghan M, Merchant AT. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J. 2008;7:26. doi: 10.1186/1475-2891-7-26.
  • Collins CT, Reid J, Makrides M, et al. Prediction of body water compartments in preterm infants by bioelectrical impedance spectroscopy. Eur J Clin Nutr. 2013;67:S47–S53.
  • Ward L, Byrne N, Rutter K, et al. Reliability of multiple frequency bioelectrical impedance analysis: an intermachine comparison. Am J Hum Biol. 1997;9:63–72.
  • Ward LC, Elia M, Cornish BH. Potential errors in the application of mixture theory to multifrequency bioelectrical impedance analysis. Physiol Meas. 1998;19:53–60.
  • Hanai T, Koizumi N, Gotoh R. Dielectric properties of emulsions. Kolloid-Z.uZPolymere. 1962;184:143–148.
  • Chumlea WC, Guo SS, Bellisari A, et al. Reliability for multiple frequency bioelectric impedance. Am J Hum Biol. 1994;6:195–202.
  • Cornish BH, Thomas BJ, Ward LC. Improved prediction of extracellular and total body water using impedance loci generated by multiple frequency bioelectrical impedance analysis. Phys Med Biol. 1993;38:337–346.
  • Hart XF. Bioimpedance in the clinic. Slov Med J. 2009;78:782–790.
  • Buendia R, Seoane F, Lindecrantz K, et al. Estimation of body fluids with bioimpedance spectroscopy: state of the art methods and proposal of novel methods. Physiol Meas. 2015;36:2171–2187.
  • Heyward VH, Cook KL, Hicks VL, et al. Predictive accuracy of three field methods for estimating relative body fatness of nonobese and obese women. Int J Sport Nutr. 1992;2:75–86.
  • Sesmero M-A, Mazariegos M, Pedrón C, et al. Bioimpedance electrical spectroscopy in the first six months of life: some methodologic considerations. Nutrition. 2005;21:567–573.
  • Nichols J, Going S, Loftin M, et al. Comparison of two bioelectrical impedance analysis instruments for determining body composition in adolescent girls. Int J Body Compos Res. 2006;4:153–160.
  • Graves JE, Pollock ML, Colvin AB, et al. Comparison of different bioelectrical impedance analysers in the prediction of body composition. Am J Hum Biol 1989;1:603.
  • Andersen TB, Jødal L, Arveschoug A, et al. Precision and within- and between-day variation of bioimpedance parameters in children aged 2-14 years. Clin Nutr. 2011;30:326–331.
  • Heyward VH. Practical body composition assessment for children, adults, and older adults. Int J Sport Nutr. 1998;8:285–307.
  • Kushner RF, Gudivaka R, Schoeller DA. Clinical characteristics influencing bioelectrical impedance analysis measurements. Am J Clin Nutr. 1996;64:423S–427S.
  • Heymsfield BS, Lohman TG, Wang, et al. Human body composition. 2nd ed. Human Kinetics; 2005. p. 536.
  • Puntis JWL. 1.2.1 Clinical evaluation and anthropometry. In: Koletzko B, Cooper P, Makrides M, et al., editors. Paediatric nutrition in practise. Basel: KARGER; 2008. p. 6–12.
  • Kushner RF, Schoeller DA, Fjeld CR, et al. Is the impedance index (ht2/R) significant in predicting total body water? Am J Clin Nutr. 1992;56:835–839.
  • Pichard C, Kyle UG, Bracco D, et al. Reference values of fat-free and fat masses by bioelectrical impedance analysis in 3393 healthy subjects. Nutrition. 2000;16:245–254.
  • Ward LC. Segmental bioelectrical impedance analysis: an update. Curr Opin Clin Nutr Metab Care. 2012;15:424–429.
  • Deurenberg P, Weststrate JA, Paymans I, et al. Factors affecting bioelectrical impedance measurements in humans. Eur J Clin Nutr. 1988;42:1017–1022.
  • Thompson DL, Thompson WR, Prestridge TJ, et al. Effects of hydration and dehydration on body composition analysis: a comparative study of bioelectric impedance analysis and hydrodensitometry. J Sports Med Phys Fitness. 1991;31:565–570.
  • Powers JS, Buchowski M, Wang L, et al. Total body water in elderly adults-assessing hydration status by bioelectrical impedance analysis vs urine osmolality. J Am Geriatr Soc. 2012;60:388–390.
  • Lukaski HC, Bolonchuk WW, Hall CB, et al. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol. 1986;60:1327–1332.
  • González-Correa CH, Caicedo-Eraso JC. Bioelectrical impedance analysis (BIA): a proposal for standardisation of the classical method in adults. J Phys Conf Ser. 2012;407:12018.
  • Liang MT, Norris S. Effects of skin blood flow and temperature on bioelectric impedance after exercise. Med Sci Sports Exerc. 1993;25:1231–1239.
  • Nakadomo F, Tanaka K, Yokoyama T, et al. Effects of different electrodes on bioelectrical impedance values. Ann Physiol Anthropol. 1990;9:41–45.
  • Caicedo-Eraso JC, González-Correa CH, González-Correa CA. Use of electrocardiogram (ECG) electrodes for bioelectrical impedance analysis (BIA). J Phys Conf Ser. 2012;407:12008.
  • Buendía R, Bogónez-Franco P, Nescolarde L, et al. Influence of electrode mismatch on Cole parameter estimation from total right side electrical bioimpedance spectroscopy measurements. Med Eng Phys. 2012;34:1024–1028.
  • Bogónez-Franco P, Nescolarde L, Bragós R, et al. Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch. Physiol Meas. 2009;30: 573–587.
  • Piccoli A, Fanos V, Peruzzi L, et al. Reference values of the bioelectrical impedance vector in neonates in the first week after birth. Nutrition. 2002;18:383–387.
  • Raghavan CV, Super DM, Chatburn RL, et al. Estimation of total body water in very-low-birth-weight infants by using anthropometry with and without bioelectrical impedance and H2[(18)O]. Am J Clin Nutr. 1998;68:668–674.
  • Tang W, Ridout D, Modi N. Assessment of total body water using bioelectrical impedance analysis in neonates receiving intensive care. Arch Dis Child Fetal Neonatal Ed. 1997;77:F123–F126.
  • Oldroyd B, Truscott JG, Holland PC, et al. Multi-frequency bio-electrical impedance: precision in normal children. Appl Radiat Isot. 1998;49:529–530.
  • Ackmann JJ, Seitz MA. Methods of complex impedance measurements in biologic tissue. Crit Rev Biomed Eng. 1984;11:281–311.
  • Lukaski HC, Bolonchuk WW. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space Environ Med. 1988;59:1163–1169.
  • Gartner A, Maire B, Delpeuch F, et al. Importance of electrode position in bioelectrical impedance analysis. Am J Clin Nutr. 1992;56:1067–1068.
  • Gartner A, Maire B, Delpeuch F, et al. The use of bioelectrical impedance analysis in newborns. The need for Standardization. In: Ellis KJ, Eastman JD, editors. Human Body Composition. US: Springer; 1993. p. 165–168.
  • Sidhu JS, Triggs EJ, Charles BG, et al. Electrode placement in neonatal bioelectrical impedance analysis. Med Biol Eng Comput. 1994;32:456–459.
  • Mayfield SR, Uauy R, Waidelich D. Body composition of low-birth-weight infants determined by using bioelectrical resistance and reactance. Am J Clin Nutr. 1991;54:296–303.
  • Gartner A, Sarda P, Dupuy RP, et al. Bioelectrical impedance analysis in small- and appropriate-for-gestational-age newborn infants. Eur J Clin Nutr. 1994;48:425–432.
  • Lingwood BE, Storm van Leeuwen A-M, Carberry AE, et al. Prediction of fat-free mass and percentage of body fat in neonates using bioelectrical impedance analysis and anthropometric measures: validation against the PEA POD. Br J Nutr. 2012;107:1545–1552.
  • Ward LC, Isenring E, Dyer JM, et al. Resistivity coefficients for body composition analysis using bioimpedance spectroscopy: effects of body dominance and mixture theory algorithm. Physiol Meas. 2015;36:1529–1549.
  • Savegnago Mialich M, Maria Faccioli Sicchieri J, Afonso Jordao A Jr. Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. Int J Clin Nutr. 2014;1:1–10.
  • Chumlea WC, Baumgartner RN, Mitchell CO. The use of segmental bioelectric impedance in estimating body composition. In: Yasumura S, Harrison JE, McNeill KG, et al., editors. In vivo body composition studies. US: Springer; 1990. p. 3753–33785.
  • Lorenzo AD, Andreoli A. Segmental bioelectrical impedance analysis. Curr Opin Clin Nutr Metab Care. 2003;6:551–555.
  • Cornish BH, Jacobs A, Thomas BJ, et al. Optimizing electrode sites for segmental bioimpedance measurements. Physiol Meas 1999;20:241–250.
  • Wan CS, Ward LC, Halim J, et al. Bioelectrical impedance analysis to estimate body composition, and change in adiposity, in overweight and obese adolescents: comparison with dual-energy x-ray absorptiometry. BMC Pediatr. 2014;14:249. doi: 10.1186/1475-2891-7-26.
  • Fuller NJ, Fewtrell MS, Dewit O, et al. Segmental bioelectrical impedance analysis in children aged 8-12 y: 1. The assessment of whole-body composition. Int J Obes Relat Metab Disord. 2002;26:684–691.
  • Prins M, Hawkesworth S, Wright A, et al. Use of bioelectrical impedance analysis to assess body composition in rural Gambian children. Eur J Clin Nutr. 2008;62:1065–1074.
  • Fuller NJ, Fewtrell MS, Dewit O, et al. Segmental bioelectrical impedance analysis in children aged 8-12 y: 2. The assessment of regional body composition and muscle mass. Int J Obes Relat Metab Disord. 2002;26:692–700.
  • Xitron Technologies, Inc., San Diego, CA, USA. OPERATING MANUAL: HYDRA ECF/ICF (Model 4200) Bio-Impedance spectrum analyser for measuring intracellular and extracellur fluid volumes. 2007. p. 1–124. Report No.: 1.03.
  • Aaron R, Huang M, Shiffman CA. Anisotropy of human muscle via non-invasive impedance measurements. Phys Med Biol. 1997;42:1245–1262.
  • Shiffman CA, Aaron R, Amoss V, et al. Resistivity and phase in localized BIA. Phys Med Biol. 1999;44:2409–2429.
  • Gibson AL, Beam JR, Alencar MK, et al. Time course of supine and standing shifts in total body, intracellular and extracellular water for a sample of healthy adults. Eur J Clin Nutr. 2015;69:14–19.
  • Margutti AVB, Monteiro JP, Camelo JS Jr. Reference distribution of the bioelectrical impedance vector in healthy term newborns. Br J Nutr. 2010;104:1508–1513.
  • Tanabe RF, de Azevedo ZMA, Fonseca VM, et al. Distribution of bioelectrical impedance vector values in multi-ethnic infants and pre-school children. Clin Nutr. 2012;31:144–148.
  • Buch E, Bradfield J, Larson T, et al. Effect of bioimpedance body composition analysis on function of implanted cardiac devices. Pacing Clin Electrophysiol. 2012;35:681–684.
  • Lingwood BE, Dunster KR, Ward LC. Cardiorespiratory monitoring equipment interferes with whole body impedance measurements. Physiol Meas. 2005;26:S235–S240.
  • Grimnes S, Martinsen ØG. Bioimpedance and bioelectricity basics. In: Grimnes S, Martinsen ØG, editors. Bioimpedance and bioelectricity basics (second edition). New York: Academic Press; 2008. p. 1–6.
  • Cornish BH, Thomas BJ, Ward LC. Effect of temperature and sweating on bioimpedance measurements. Appl Radiat Isot. 1998;49:475–476.
  • Gudivaka R, Schoeller D, Kushner RF. Effect of skin temperature on multifrequency bioelectrical impedance analysis. J Appl Physiol. 1996;81:838–845.
  • Caton JR, Molé PA, Adams WC, et al. Body composition analysis by bioelectrical impedance: effect of skin temperature. Med Sci Sports Exerc. 1988;20:489–491.
  • De Palo T, Messina G, Edefonti A, et al. Normal values of the bioelectrical impedance vector in childhood and puberty. Nutrition. 2000;16:417–424.
  • Rush EC, Bristow S, Plank LD, et al. Bioimpedance prediction of fat-free mass from dual-energy X-ray absorptiometry in a multi-ethnic group of 2-year-old children. Eur J Clin Nutr. 2013;67:214–217.
  • Ramírez E, Valencia ME, Bourges H, et al. Body composition prediction equations based on deuterium oxide dilution method in Mexican children: a national study. Eur J Clin Nutr. 2012;66: 1099–1103.
  • Thomas BJ, Cornish BH, Ward LC. Bioelectrical impedance analysis for measurement of body fluid volumes: a review. J Clin Eng. 1992;17:505–510.
  • Wingfield D, Freeman GK, General Practise Hypertension Study Group (GPHSG), et al. Selective recording in blood pressure readings may increase subsequent mortality. QJM. 2002;95:571–577.
  • Nielsen BM, Dencker M, Ward L, et al. Prediction of fat-free body mass from bioelectrical impedance among 9- to 11-year-old Swedish children. Diabetes Obes Metab. 2007;9:521–539.
  • Kushner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr. 1986;44:417–424.
  • Abu Khaled M, McCutcheon MJ, Reddy S, et al. Electrical impedance in assessing human body composition: the BIA method. Am J Clin Nutr. 1988;47:789–792.
  • Barrera-Ariza L, González-Correa CH, González-Correa CA. Quality of reporting of bioelectrical impedance analysis (BIA) studies evaluating body fluid volumes: the need for standardisation. In: Dössel O, Schlegel WC, editors. World Congress on medical physics and biomedical engineering. Munich, Germany: Springer Berlin Heidelberg; 2009. p. 244–246. [Internet]. 2009 Sep 7 [cited 2015 Jun 2]. (IFMBE Proceedings). Available from: http://link.springer.com/chapter/10.1007/978-3-642-03885-3_68.
  • Nagano M, Suita S, Yamanouchi T. The validity of bioelectrical impedance phase angle for nutritional assessment in children. J Pediatr Surg. 2000;35:1035–1039.
  • Azevedo ZMA, Moore DCBC de Matos FAA, et al. Bioelectrical impedance parameters in critically ill children: importance of reactance and resistance. Clin Nutr. 2013;32:824–829.
  • VanderJagt DJ, Harmatz P, Scott-Emuakpor AB, et al. Bioelectrical impedance analysis of the body composition of children and adolescents with sickle cell disease. J Pediatr. 2002;140:681–687.
  • Pencharz PB, Azcue M. Use of bioelectrical impedance analysis measurements in the clinical management of malnutrition. Am J Clin Nutr. 1996;64:485S–488S.
  • Bosy-Westphal A, Danielzik S, Dörhöfer R-P, et al. Patterns of bioelectrical impedance vector distribution by body mass index and age: implications for body-composition analysis. Am J Clin Nutr. 2005;82:60–68.
  • Pietrobelli A, Andreoli A, Cervelli V, et al. Predicting fat-free mass in children using bioimpedance analysis. Acta Diabetol. 2003;40:S212–S215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.