220
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Review on different experimental techniques developed for recording force-deformation behaviour of soft tissues; with a view to surgery simulation applications

, &
Pages 257-274 | Received 12 Jun 2016, Accepted 21 Nov 2016, Published online: 31 Jan 2017

References

  • Yamada H. Strength of biological materials. Baltimore (MD): the William and Wilkins Company; 1970.
  • Fung YC. Biomechanics: mechanical properties of living tissues. New York (NY): Springer Science & Business Media; 2013.
  • Satava RM. How the future of surgery is changing: robotics, telesurgery, surgical simulators and other advanced technologies. J Chirurgie. 2009;5:311–325.
  • Dharia SP, Falcone T. Robotics in reproductive medicine. Fertil Steril. 2005;84:1–11.
  • Faust RA. Robotics in surgery: history, current and future applications. New York (NY): Nova Publishers; 2007.
  • Horie H, Okada M, Kojima M, et al. Advantages of hand-assisted laparoscopic surgery for ulcerative colitis Jichi Med Sch J. 2005;28:17–25.
  • Holt D, Zaidi A, Abramson J, et al. Telesurgery: advances and trends. Univ Toronto Med J. 2004;82:52–55.
  • Varkarakis IM, Rais-Bahrami S, Kavoussi LR, et al. Robotic surgery and telesurgery in urology. Urology. 2005;65:840–846.
  • Bove P, Stoianovici D, Micali S, et al. Is telesurgery a new reality? Our experience with laparoscopic and percutaneous procedures. J Endourol. 2003;17:137–142.
  • Najarian S, Dargahi J, Mehrizi A. Artificial tactile sensing in biomedical engineering. New York (NY): McGraw Hill Professional; 2009.
  • Farkoush SH, Najarian S. Can surgeon’s hand be replaced with a smart surgical instrument in esophagectomy? Med Hypotheses. 2009;73:735–740.
  • Richards C, Rosen J, Hannaford B, et al. Skills evaluation in minimally invasive surgery using force/torque signatures. Surg Endosc. 2000;14:791–798.
  • Satava RM. Surgical education and surgical simulation. World J Surg. 2001;25:1484–1489.
  • Satava RM. Medical virtual reality. The current status of the future. Stud Health Technol Inform. 1996;29:100–106.
  • Delingette H. Toward realistic soft-tissue modeling in medical simulation. Proc IEEE. 1998;86:512–523.
  • Delp SL, Loan JP. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput Biol Med. 1995;25:21–34.
  • Kuhn C, Kühnapfel U, Krumm HG, et al. Karlsruhe endoscopic surgery trainer-avirtual reality based training system for minimally invasive surgery. MMVR’97. Washington (DC): IOS Press Ohmsha; 1997.
  • Suzuki N, Hattori A, Ezumi T, et al. Simulator for virtual surgery using deformable organ models and force feedback system. Stud Health Technol Inform. 1998;50:227–233.
  • Kaye J, Metaxas DN, Primiano FP Jr. A 3D virtual environment for modeling mechanical cardiopulmonary interactions. CVRMed-MRCAS'97. Berlin Heidelberg (Germany): Springer-Verlag; 1997.
  • Ayache N. Epidaure: a research project in medical image analysis, simulation, and robotics at INRIA. IEEE Trans Med Imaging. 2003;22:1185–1201.
  • Teschner M, Heidelberger B, Muller M, et al. Optimized spatial hashing for collision detection of deformable objects. Munich (Germany): VMV; 2003.
  • Holzapfel GA, Ogden RW. Biomechanics of soft tissue in cardiovascular systems. Vol. 441. Vienna (Austria): Springer; 2014.
  • Basafa E, Farahmand F, Vossoughi G. A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery. Stud Health Technol Inform. 2008;132:23–25.
  • Terzopoulos D, Platt J, Barr A, et al. Elastically deformable models. ACM SIGGRAPH Computer Graphics. New York (NY): ACM; 1987.
  • Bathe K. Finite element procedures. Englewood Cliffs (NJ): Prentice-Hall; 1996.
  • Bro-Nielsen M. Finite element modeling in surgery simulation. Proc IEEE. 1998;86:490–503.
  • Ye Y, Yu J, Gu Z. Versatile protein nanogels prepared by in situ polymerization. Macromol Chem Phys. 2016;217:333–343.
  • Quignot N, Bois FY. A computational model to predict rat ovarian steroid secretion from in vitro experiments with endocrine disruptors. PLoS One. 2013;8:e53891.
  • Najarian S, Dargahi J, Darbemamieh G, et al. Mechatronics in medicine a biomedical engineering approach. New York (NY): McGraw-Hill Professional; 2011.
  • Afshari E, Najarian S, Simforoosh N, et al. Design and fabrication of a novel tactile sensory system applicable in artificial palpation. Minim Invasive Ther Allied Technol. 2011;20:22–29.
  • Hosseini SM, Kashani SM, Najarian S, et al. A medical tactile sensing instrument for detecting embedded objects, with specific application for breast examination. Int J Med Robot Comput Assist Surg. 2010;6:73–82.
  • Mojra A, Najarian S, Towliat Kashani SM, et al. A novel haptic robotic viscogram for characterizing the viscoelastic behaviour of breast tissue in clinical examinations. Int J Med Robot Comput Assist Surg. 2011;7:282–292.
  • Mehrizi AA, Najarian S, Khodambashi R, et al. A novel method of tactile assessment of arteries using computational approach. Int J Acad Res. 2011;3:1059–1064.
  • Najarian S, Afshari E. Evolutions and future directions of surgical robotics: a review. Int J Clin Med. 2012;3:75–82.
  • Schostek S, Schurr MO, Buess GF. Review on aspects of artificial tactile feedback in laparoscopic surgery. Med Eng Phys. 2009;31:887–898.
  • Westebring-Van Der Putten EP, Goossens RH, Jakimowicz JJ, et al. Haptics in minimally invasive surgery – a review. Minim Invasive Ther Allied Technol. 2008;17:3–16.
  • Khoorjestan SM, Najarian S, Simforoosh N, et al. Design and modeling of a novel flexible surgical instrument applicable in minimally invasive surgery. Int J Nat Eng Sci. 2010;4:53–60.
  • Rivlin R. Large elastic deformations of isotropic materials. I. Fundamental concepts. Phil Trans R Soc B. 1948;240:459–490.
  • Beatty MF. Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl Mech Rev. 1987;40:1699–1734.
  • Ophir J, Céspedes I, Ponnekanti H, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–134.
  • Gennisson JL, Deffieux T, Fink M, et al. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94:487–495.
  • Ophir J, Alam SK, Garra B, et al. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H J Eng Med. 1999;213:203–233.
  • Sarvazyan A, Hall TJ, Urban MW, et al. An overview of elastography: an emerging branch of medical imaging. Curr Med Imaging Rev. 2011;7:255–282.
  • Hoskins PR, Svensson W. Current state of ultrasound elastography. Ultrasound. 2012;20:3–4.
  • Mariappan YK, Glaser KJ, Ehman RL. Magnetic resonance elastography: a review. Clin Anat. 2010;23:497–511.
  • Kennedy BF, Kennedy KM, Sampson DD. A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J Sel Topics Quantum Electron. 2014;20:272–288.
  • Wells PN, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface. 2011;8:1521–1549.
  • Sarvazyan AP, Rudenko OV, Swanson SD, et al. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24:1419–1435.
  • Nightingale KR, Palmeri ML, Nightingale RW, et al. On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am. 2001;110:625–634.
  • Gennisson JL, Rénier M, Catheline S, et al. Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force. J Acoust Soc Am. 2007;122:3211–3219.
  • Mendelson E, Chen JF, Karstaedt P. Assessing tissue stiffness may boost breast imaging specificity. Diagn Imaging. 2009;31:15–17.
  • Sandrin L, Tanter M, Gennisson JL, et al. Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49:436–446.
  • Cournane S, Fagan A, Browne J. Review of ultrasound elastography quality control and training test phantoms. Ultrasound. 2012;20:16–23.
  • Manduca A, Oliphant TE, Dresner MA, et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal. 2001;5:237–254.
  • Bercoff J, Chaffai S, Tanter M, et al. In vivo breast tumor detection using transient elastography. Ultrasound Med Biol. 2003;29:1387–1396.
  • Garra BS, Cespedes EI, Ophir J, et al. Elastography of breast lesions: initial clinical results. Radiology. 1997;202:79–86.
  • Gong X, Xu Q, Xu Z, et al. Real-time elastography for the differentiation of benign and malignant breast lesions: a meta-analysis. Breast Cancer Res Treat. 2011;130:11–18.
  • Cochlin DL, Ganatra R, Griffiths D. Elastography in the detection of prostatic cancer. Clin Radiol. 2002;57:1014–1020.
  • Salomon G, Graefen M, Heinzer H, et al. [The value of real-time elastography in the diagnosis of prostate cancer]. Der Urologe Ausg A. 2009;48:628–636.
  • Asteria C, Giovanardi A, Pizzocaro A, et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid. 2008;18:523–531.
  • Lyshchik A, Tatsuya H, Asato R, et al. Thyroid gland tumor diagnosis at US elastography 1. Radiology. 2005;237:202–211.
  • Munirama S, McLeod GA, Eisma R, et al. Application of sonoelastography to regional anaesthesia: a descriptive study with the Thiel embalmed cadaver model. Ultrasound. 2012;20:41–48.
  • Chakraborty A, Bamber JC, Dorward NL. Preliminary investigation into the use of ultrasound elastography during brain tumour resection. Ultrasound. 2012;20:33–40.
  • Bedossa P, Dargère D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology. 2003;38:1449–1457.
  • Jeong WK, Lim HK, Lee HK, et al. Principles and clinical application of ultrasound elastography for diffuse liver disease. Ultrasonography. 2014;33:149–160.
  • Koizumi Y, Hirooka M, Kisaka Y, et al. Liver fibrosis in patients with chronic hepatitis C: noninvasive diagnosis by means of real-time tissue elastography—establishment of the method for measurement. Radiology. 2011;258:610–617.
  • Chaturvedi P, Insana MF, Hall TJ. Ultrasonic and elasticity imaging to model disease-induced changes in soft-tissue structure. Med Image Anal. 1998;2:325–338.
  • Gao L, Parker KJ, Lerner RM, et al. Imaging of the elastic properties of tissue-a review. Ultrasound Med Biol. 1996;22:959–977.
  • Greenleaf JF, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues. Annu Rev Biom Eng. 2003;5:57–78.
  • Hall TJ. AAPM/RSNA physics tutorial for residents: topics in US: beyond the basics: elasticity imaging with US 1. Radiographics. 2003;23:1657–1671.
  • Konofagou E. Quo vadis elasticity imaging? Ultrasonics. 2004;42:331–336.
  • Ophir J, Alam SK, Garra BS, et al. Elastography: imaging the elastic properties of soft tissues with ultrasound. J Med Ultrason (2001). 2002;29:155–171.
  • Parker KJ, Doyley MM, Rubens DJ. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol. 2010;56:R1.
  • Parker KJ, Taylor LS, Gracewski S, et al. A unified view of imaging the elastic properties of tissue. J Acoust Soc Am. 2005;117:2705–2712.
  • Varghese T. Quasi-static ultrasound elastography. Ultrasound Clin. 2009;4:323–338.
  • de Korte CL, van der Steen AF, Cépedes EI, et al. Characterization of plaque components and vulnerability with intravascular ultrasound elastography. Phys Med Biol. 2000;45:1465–1475.
  • Henriksen JR, Ipsen JH. Measurement of membrane elasticity by micro-pipette aspiration. Eur Phys J E Soft Matter. 2004;14:149–167.
  • Zhao R, Sider KL, Simmons CA. Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration. Acta Biomater. 2011;7:1220–1227.
  • Guccione JM, Okamoto RJ. Epicardial suction: a new approach to mechanical testing of myocardium. ASME-Publications-BED. 1994;28:9.
  • Ohashi T, Matsumoto T, Aoki T, et al. Local elastic moduli of bovine and porcine aortic walls measured with pipette aspiration technique. ASME-Publications-BED. 1995;31:259–260.
  • Okamoto RJ, Guccione JM, Moulton MJ, et al. Measurement of left ventricular deformation during epicardial suction. ASME-Publications-BED. 1995;31:255–256.
  • Aoki T, Ohashi T, Matsumoto T, et al. The pipette aspiration applied to the local stiffness measurement of soft tissues. Ann Biomed Eng. 1997;25:581–587.
  • Okamoto R, Moulton MJ, Peterson SJ, et al. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall. J Biomech Eng. 2000;122:479–487.
  • Vuskovic V, Kauer M, Székely G, et al. Realistic force feedback for virtual reality based diagnostic surgery simulators. Proceedings of IEEE International Conference on Robotics and Automation (ICRA'00); 2000; San Francisco, CA.
  • Kauer M, Vuskovic V, Dual J. Tissue aspiration and inverse finite element characterisation of soft tissues. Comput Methods Biomech Biomed Eng. 2001;4:291–305.
  • Kauer M, Vuskovic V, Dual J, et al. Inverse finite element characterization of soft tissues. Med Image Anal. 2002;6:275–287.
  • Kauer M. Inverse finite element characterization of soft tissues with aspiration experiments. Zürich, (Switzerland): ETH Zürich, Swiss Federal Institute of Technology; 2001.
  • Nava A, Mazza E, Kleinermann F, et al. Determination of the mechanical properties of soft human tissues through aspiration experiments. Medical image computing and computer-assisted intervention-MICCAI 2003. Berlin (Germany): Springer; 2003. p. 222–229.
  • Nava A, Mazza E, Furrer M, et al. In vivo mechanical characterization of human liver. Med Image Anal. 2008;12:203–216.
  • Nava A, Mazza E, Kleinermann F, et al. Evaluation of the mechanical properties of human liver and kidney through aspiration experiments. Technol Health Care. 2004;12:269–280.
  • Weiss S, Bajka M, Nava A, et al. A finite element model for the simulation of hydrometra. Technol Health Care. 2004;12:259–267.
  • Buerzle W, Mazza E. On the deformation behavior of human amnion. J Biomech. 2013;46:1777–1783.
  • Mauri A, Ehret AE, Perrini M, et al. Deformation mechanisms of human amnion: quantitative studies based on second harmonic generation microscopy. J Biomech. 2015;48:1606–1613.
  • Mazza E, Ehret AE. Mechanical biocompatibility of highly deformable biomedical materials. J Mech Behav Biomed Mater. 2015;48:100–124.
  • Mazza E, Nava A, Bauer M, et al. Mechanical properties of the human uterine cervix: an in vivo study. Med Image Anal. 2006;10:125–136.
  • Mazza E, Nava A, Hahnloser D, et al. The mechanical response of human liver and its relation to histology: an in vivo study. Med Image Anal. 2007;11:663–672.
  • Mazza E, Parra-Saavedra M, Bajka M, et al. In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy. Prenat Diagn. 2014;34:33–41.
  • Hayes W, Keer LM, Herrmann G, et al. A mathematical analysis for indentation tests of articular cartilage. J Biomech. 1972;5:541–551.
  • Hendley A, Marks R, Payne P. Measurement of forces for point indentation of the stratum corneum in vivo: the influences of age, sex, site delipidisation and hydration. Bioeng Skin. 1982;3:234–240.
  • Zhang M, Zheng Y, Mak AF. Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation. Med Eng Phys. 1997;19:512–517.
  • Miller K, Chinzei K, Orssengo G, et al. Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J Biomech. 2000;33:1369–1376.
  • Brouwer I, Ustin J, Bentley L, et al. Measuring in vivo animal soft tissue properties for haptic modeling in surgical. Medicine Meets Virtual Reality. Amsterdam (Netherlands): IOS Press; 2001. p. 69–74.
  • Carter FJ, Frank TG, Davies PJ, et al. Measurements and modelling of the compliance of human and porcine organs. Med Image Anal. 2001;5:231–236.
  • Davies PJ, Carter FJ, Cuschieri A. Mathematical modelling for keyhole surgery simulations: a biomechanical model for spleen tissue. IMA J Appl Math. 2002;67:41–67.
  • Ottensmeyer MP. In vivo measurement of solid organ visco-elastic properties. Stud Health Technol Inform. 2002;85:328–333.
  • Kim J, Boon KT, Stylopoulos N, et al. Characterization of intra-abdominal tissues from in vivo animal experiments for surgical simulation. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003. Berlin (Germany): Springer; 2003. p. 206–213.
  • Hu T, Desai JP. Characterization of soft-tissue material properties: large deformation analysis. Medical Simulation. Berlin Heidelberg: Springer; 2004. p. 28–37.
  • Kim J, Srinivasan MA. Characterization of viscoelastic soft tissue properties from in vivo animal experiments and inverse FE parameter estimation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2005. Berlin (Germany): Springer; 2005. p. 599–606.
  • Hu T. Reality-based soft tissue probing: experiments and computational model for application to minimally invasive surgery. Philadelphia (PA): Drexel University; 2006.
  • Samur E, Sedef M, Basdogan C, et al. A robotic indenter for minimally invasive measurement and characterization of soft tissue response. Med Image Anal. 2007;11:361–373.
  • Lim YJ, Deo D, Singh TP, et al. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation. Surg Endosc. 2009;23:1298–1307.
  • McKee CT, Last JA, Russell P, et al. Indentation versus tensile measurements of Young's modulus for soft biological tissues. Tissue Eng Part B Rev. 2011;17:155–164.
  • Chai CK, Akyildiz AC, Speelman L, et al. Local axial compressive mechanical properties of human carotid atherosclerotic plaques—characterisation by indentation test and inverse finite element analysis. J Biomech. 2013;46:1759–1766.
  • Fu Y, Chui C. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress–strain data. J Biomech. 2014;47:2430–2435.
  • Hosseini M, Najarian S, Motaghinasab S, et al. Detection of tumours using a computational tactile sensing approach. Int J Med Robot Comput Assist Surg. 2006;2:333–340.
  • Hosseini S, Najarian S, Motaghinasab S, et al. Prediction of tumor existence in the virtual soft tissue by using tactile tumor detector. Am J Appl Sci. 2008;5:483–489.
  • Afshari E, Najarian S, Simforoosh N. Application of artificial tactile sensing approach in kidney-stone-removal laparoscopy. Biomed Mater Eng. 2010;20:261–267.
  • Mojra A, Najarian S, Kashani SM, et al. A novel tactile-guided detection and three-dimensional localization of clinically significant breast masses. J Med Eng Technol. 2012;36:8–16.
  • Mojra A, Najarian S, Towliat Kashani SM, et al. A novel robotic tactile mass detector with application in clinical breast examination. Minim Invasive Ther Allied Technol. 2012;21:210–221.
  • Abouei Mehrizi A, Moini M, Afshari E, et al. Application of artificial palpation in vascular surgeries for detection of peripheral arterial stenosis. J Med Eng Technol. 2014;38:169–178.
  • Mehrizi AA, Najarian S, Moini M. Modeling, constructing, and testing of a novel tactile system to detect arterial stenosis by imitating surgeon's palpation. Int J Acad Res. 2010;2:120–125.
  • Hu T, Castellanos AE, Tholey G, et al. Real-time haptic feedback in laparoscopic tools for use in gastro-intestinal surgery. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002. Berlin Heidelberg: Springer; 2002. p. 66–74.
  • Brown JD, Rosen J, Kim YS, et al. In-vivo and in-situ compressive properties of porcine abdominal soft tissues. Stud Health Technol Inform. 2003;94:26–32.
  • Hannaford B, Trujillo J, Sinanan M, et al. Computerized endoscopic surgical grasper. Stud Health Technol Inform. 1998;50:265–271.
  • Rosen J, Hannaford B, MacFarlane MP, et al. Force controlled and teleoperated endoscopic grasper for minimally invasive surgery-experimental performance evaluation. IEEE Trans Biomed Eng. 1999;46:1212–1221.
  • Rosen J, Brown JD, De S, et al. Biomechanical properties of abdominal organs in vivo and postmortem under compression loads. J Biomech Eng. 2008;130:021020.
  • Mirbagheri A, Farahmand F. A triple‐jaw actuated and sensorized instrument for grasping large organs during minimally invasive robotic surgery. Int J Med Robot Comput Assist Surg. 2013;9:83–93.
  • Mirbagheri A, Farahmand F. Design, analysis, and experimental evaluation of a novel three-fingered endoscopic large-organ grasper. J Med Devices. 2013;7:025001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.