235
Views
4
CrossRef citations to date
0
Altmetric
Innovation

A no-moving-parts sensor for the detection of eye fixation using polarised light and retinal birefringence information

&
Pages 249-256 | Received 26 Apr 2016, Accepted 09 Jan 2017, Published online: 26 Jan 2017

References

  • Collewijn H, van der Mark F, Jansen TC. Precise recording of human eye movements. Vision Res. 1975;15:447–450.
  • Paperno E, Semyonov D. A new method for eye location tracking. IEEE Trans Biomed Eng. 2003;50:1174–1179.
  • Merchant J. Laboratory oculometer. Lexington (MA): Honeywell, Radiation Center/Electronics Research Center, NASA; 1968.
  • Hartnegg K, Fischer B. A turn-key transportable eye-tracking instrument for clinical assessment. Behav Res Methods Instrum Comput. 2002;34:625–629.
  • Cornsweet TN, Crane HD. Accurate two-dimensional eye tracker using first and fourth Purkinje images. J Opt Soc Am. 1973;63:921–928.
  • Eizenman M, Frecker RC, Hallett PE. Precise non-contacting measurement of eye movements using the corneal reflex. Vision Res. 1984;24:167–174.
  • Reulen JP, Marcus JT, Koops D, et al. Precise recording of eye movement: the IRIS technique. Part 1. Med Biol Eng Comput. 1988;26:20–26.
  • Irie K, Wilson BA, Jones RD, et al. A laser-based eye-tracking system. Behav Res Methods Instrum Comput. 2002;34:561–572.
  • Clarke AH, Ditterich J, Druen K, et al. Using high frame rate CMOS sensors for three-dimensional eye tracking. Behav Res Methods Instrum Comput. 2002;34:549–560.
  • Schaeffel F. Kappa and Hirschberg ratio measured with an automated video gaze tracker. Optom Vis Sci. 2002;79:329–334.
  • Talukder A, Morookian J-M, Monacos S, et al. Eye-tracking architecture for biometrics and remote monitoring. Appl Opt. 2005;44:693–700.
  • Salman MS, Sharpe JA, Eizenman M, et al. Saccades in children. Vision Res. 2006;46:1432–1439.
  • Stahl JS, van Alphen AM, De Zeeuw CI. A comparison of video and magnetic search coil recordings of mouse eye movements. J Neurosci Methods. 2000;99:101–110.
  • Mello-Thoms C, Britton C, Abrams G, et al. Head-mounted versus remote eye tracking of radiologists searching for breast cancer: a comparison. Acad Radiol. 2006;13:203–209.
  • Gonzalez EG, Wong AM, Niechwiej-Szwedo E, et al. Eye position stability in amblyopia and in normal binocular vision. Invest Ophthalmol Vis Sci. 2012;53:5386–5394.
  • Hammer DX, Ferguson RD, Magill JC, et al. Compact scanning laser ophthalmoscope with high-speed retinal tracker. Appl Opt. 2003;42:4621–4632.
  • Ferguson RD. Servo tracking system utilizing phase-sensitive detection of reflectance variation. U.S. 1999.
  • Duke-Elder S, Ashton N, Smith RJH, et al. Ch. XV: Entoptic observations. The foundations of ophthalmology. St. Louis: C. V. Mosby Company; 1968. p. 457.
  • klein Brink HB, van Blokland GJ. Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J Opt Soc Am A. 1988;5:49–57.
  • Dreher AW, Reiter K, Weinreb RN. Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer. Appl Opt. 1992;31:3730–3735.
  • Miura M, Elsner AE, Weber A, et al. Imaging polarimetry in central serous chorioretinopathy. Am J Ophthalmol. 2005;140:1014–1019.
  • Weber A, Elsner AE, Miura M, et al. Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration. Eye. 2007;21:353–361.
  • Hunter DG, Sandruck JC, Sau S, et al. Mathematical modeling of retinal birefringence scanning. J Opt Soc Am A Opt Image Sci Vis. 1999;16:2103–2111.
  • Hunter DG, Patel SN, Guyton DL. Automated detection of foveal fixation by use of retinal birefringence scanning. Appl Opt. 1999;38:1273–1279.
  • Guyton DL, Hunter DG, Patel SN, et al. Eye fixation monitor and tracker. US patent 6,027,216. 2000 Feb 22.
  • Hunter DG, Shah AS, Sau S, et al. Automated detection of ocular alignment with binocular retinal birefringence scanning. Appl Opt. 2003;42:3047–3053.
  • Nassif D, Gramatikov B, Guyton D, et al. Pediatric vision screening using binocular retinal birefringence scanning. In: Manns F, Soederberg PG, Ho A, editors. SPIE proceedings, vol. 4951, Ophthalmic technologies XIII. Bellingham (WA): SPIE; 2003. p. 9–20.
  • Hunter DG, Nassif DS, Piskun NV, et al. Pediatric vision screener 1: instrument design and operation. J Biomed Opt. 2004;9:1363–1368.
  • Loudon SE, Rook CA, Nassif DS, et al. Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner. Invest Ophthalmol Vis Sci. 2011;52:5043–5048.
  • Irsch K, Gramatikov BI, Wu YK, et al. New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation. J Biomed Opt. 2014;19:067004.
  • Irsch K, Gramatikov BI, Wu YK, et al. Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence. Opt Express. 2014;22:7972–7988.
  • Gramatikov BI, Irsch K, Guyton D. Optimal timing of retinal scanning during dark adaptation, in the presence of fixation on a target: the role of pupil size dynamics. J Biomed Opt. 2014;19:106014.
  • Gramatikov BI, Irsch K, Wu YK, et al. New pediatric vision screener, part II: electronics, software, signal processing and validation. Biomed Eng Online. 2016;15:15.
  • Gramatikov B, Irsch K, Mullenbroich M, et al. A device for continuous monitoring of true central fixation based on foveal birefringence. Ann Biomed Eng. 2013;41:1968–1978.
  • Gramatikov B. Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal. Biomed Eng Online. 2013;12:41.
  • Gramatikov B, Guyton D, Irsch K. Method and apparatus for detecting fixation of at least one eye of a subject on a target. US patent 8,678,592 B2. 2014 Mar 25.
  • Gramatikov BI, Zalloum OHY, Wu YK, et al. Birefringence-based eye fixation monitor with no moving parts. J Biomed Opt. 2006;11:034025.
  • Gramatikov BI, Zalloum OH, Wu YK, et al. Directional eye fixation sensor using birefringence-based foveal detection. Appl Opt. 2007;46:1809–1818.
  • Shurcliff WA. Polarized light: production and use. Cambridge (MA): Harvard University Press; 1962.
  • Laser Institute of America L. American National Standard for Safe Use of Lasers ANSI Z136.1. 2014.
  • Gramatikov BI, Guyton DL, Irsch K. Eye tracking and gaze fixation detection systems, components and methods using polarized light. Patent application US2016/0081547 A1, priority to provisional patent application No. 61/823,738 from 15 May 2013; international application PCT/US2014/038265 filed on 15 May 2014.
  • Gramatikov BI, Guyton DL, Irsch K, et al. Method and System for Improving Aiming during Optical Coherence Tomography on Young Children by Synchronization with Retinal Birefringence Scanning. International PCT patent application, PCT/US2014/058756 from 10/2/2014; International publication number WO 2015/051077 A1; 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.