149
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigating the performance of four specific types of material grafts and their effects on hemodynamic patterns as well as on von Mises stresses in a grafted three-layer aortic model using fluid-structure interaction analysis

, , &
Pages 630-643 | Received 03 Jul 2017, Accepted 18 Sep 2017, Published online: 27 Oct 2017

References

  • Alagheband M, Rahmani S, Alizadeh M, et al. Hemodynamic investigation of intraluminal thrombus effect on the wall stress in a stented three-layered aortic aneurysm model under pulsatile flow. Artery Res. 2015;10:11–19.
  • Almond CS, Morales DL, Blackstone EH, et al. The Berlin Heart EXCOR® pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation. 2013;127:1702–17011.
  • Vorp DA, Raghavan ML, Webster MW. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg. 1998;27:632–639.
  • Raghavan ML, Vorp DA, Federle MP, et al. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg. 2000;31:760–769.
  • Causin P, Gerbeau J-F, Nobile F. Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput Methods Appl Mech Eng. 2005;194:4506–4527.
  • Van Aswegen KHJ, Smuts AN, Scheffer C, et al. Investigation of leaflet geometry in a percutaneous aortic valve with the use of fluid-structure interaction simulation. J Mech Med Biol. 2012;12:1250003.
  • Xu L, Huang X, Ta N, et al. Finite element modeling of the human cochlea using fluid–structure interaction method. J Mech Med Biol. 2015;15:1550039.
  • Valencia A, Torres F. Effects of hypertension and pressure gradient in a human cerebral aneurysm using fluid structure interaction simulations. J Mech Med Biol. 2016;17:1750018.
  • He F. Wall shear stresses in a fluid–structure interaction model of pulse wave propagation. J Mech Med Biol. 2014;14:1450019.
  • Quaini A, Quarteroni A. A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Math Models Methods Appl Sci. 2007;17:957–983.
  • GaoWatanabe FM, Matsuzawa T. Stress analysis in a layered aortic arch model under pulsatile blood flow. Biomed Eng Online. 2006;5:25.
  • Zhou T, Zheng Y, Qiu J, et al. Endothelial mechanotransduction mechanisms for vascular physiology and atherosclerosis. J Mech Med Biol. 2014;14:1430006.
  • Wong KKL, Thavornpattanapong P, Cheung SCP, et al. Biomechanical investigation of pulsatile flow in a three-dimensional atherosclerotic carotid bifurcation model. J Mech Med Biol. 2013;13:1350001.
  • Fauci AS. Harrison’s principles of internal medicine, vol. 2. New York: Mcgraw-Hill; 1998.
  • Marte H, Paynter R, Forest J-C, et al. Microporous hydrophilic polyurethane vascular grafts as substitutes in the abdominal aorta of dogs. Biomaterials 1987;8:3–11.
  • Marois Y, Akoum A, King M, et al. A novel microporous polyurethane vascular graft: in vivo evaluation of the UTA prosthesis implanted as infra-renal aortic substitute in dogs. J Investig Surg. 1993;6:273–288.
  • Shah DM, Darling RC III, Kreienberg PB, et al. A critical approach for longitudinal clinical trial of stretch PTFE aortic grafts. Cardiovasc Surg. 1997;5:414–418.
  • Khan BF, Renton S, Hussain ST. Aortic aneurysm replacement with Dacron graft in a 34 year old man. How long will the graft last?. Postgrad Med J. 2003;79:348–349.
  • O’BrienMorris T, O’Donnell L, Walsh MM, McGloughlin T. Injection-moulded models of major and minor arteries: the variability of model wall thickness owing to casting technique. Proc Inst Mech Eng Part H J Eng Med. 2005;219:381–386.
  • Doyle BJ, Corbett TJ, Cloonan AJ, et al. The use of silicone materials to model abdominal aortic aneurysm behaviour. Med Eng Phys. 2009;31:1002–1012.
  • Doyle BJ, Morris LG, Callanan A, et al. 3D reconstruction and manufacture of real abdominal aortic aneurysms: from CT scan to silicone model. J Biomech Eng. 2008;130:34501.
  • Bailly L, Toungara M, Orgéas L, et al. In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes. J Mech Behav Biomed Mater. 2014;40:339–353.
  • Tanné D, Bertrand E, Kadem L, et al. Assessment of left heart and pulmonary circulation flow dynamics by a new pulsed mock circulatory system. Exp Fluids. 2010;48:837–850.
  • Gregory S, Timms D, Pearcy MJ, et al. A naturally shaped silicone ventricle evaluated in a mock circulation loop: a preliminary study. J Med Eng Technol. 2009;33:185–191.
  • Corbett TJ, Callanan A, O’donnell MR, et al. An improved methodology for investigating the parameters influencing migration resistance of abdominal aortic stent-grafts. J Endovasc Ther. 2010;17:95–107.
  • Kent KC, Zwolak RM, Jaff MR, et al. Screening for abdominal aortic aneurysm: a consensus statement. J Vasc Surg. 2004;39:267–269.
  • Cole WC, Hill GB, Bouchard AG. Are aortic aneurysms caused by atherosclerosis?. Atherosclerotic risk factors abdominal aortic aneurysm peripheral vascular disease. Chronic Dis Can. 1994;15:120–122.
  • Wan Ab Naim WANN, Ganesan POOB, Sun Z, et al. The impact of the number of tears in patient-specific Stanford type B aortic dissecting aneurysm: CFD simulation. J Mech Med Biol. 2014;14:1450017.
  • Humphrey JD, Holzapfel GA. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech. 2012;45:805–814.
  • HooshyarFakhrabadi Z, Hooshyar HS, Mehdizadeh A. Endotension distribution in fluid-structure interaction analysis of abdominal aortic aneurysm following endovascular repair. J Biomed Sci Eng. 2014;7:848–855.
  • Boutsianis E, Guala M, Olgac U, et al. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm. J Biomech Eng. 2009;131:11008.
  • Tse KM, Chiu P, Lee HP, et al. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech. 2011;44:827–836.
  • Wang H, Feng Y, Behl M, et al. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels. Front Chem Sci Eng. 2011;5:392–400.
  • Nappi F, Angelo Rosario C, Arsenio C, et al. Compliance mismatch and compressive wall stresses drive anomalous remodelling of pulmonary trunks reinforced with Dacron grafts. J Mech Behav Biomed Mater. 2016;63:287–302.
  • Spadaccio C, Nappi F, Al-Attar N, et al. Old myths, new concerns: the long-term effects of ascending aorta replacement with dacron grafts. Not all that glitters is gold. J Cardiovasc Transl Res. 2016;9:334–342.
  • Krajcer Z, Diethrich EB. Successful endoluminal repair of arterial aneurysms by Wallstent prosthesis and PTFE graft: preliminary results with a new technique. J Endovasc Ther. 1997;4:80–87.
  • Kakkos S, Papadoulas KS, Tsolakis IA, Lampropoulos G. Graft type for open abdominal aortic surgery. Cochrane Libr 2016;5:CD012162.
  • Egdahl RH. Silicone rubber as aortic grafting material. AMA Arch Surg. 1955;71:694–696.
  • O. Ohta, F. Gao, and T. Matsuzawa. The Descending Aortic Aneurysm under Vascular Structure having Three-layered using FSI. Int Conf Comput Exp Eng Sci. 2008;7:146–150.
  • Beller CJ, Labrosse MR, Thubrikar MJ, et al. Role of aortic root motion in the pathogenesis of aortic dissection. Circulation. 2004;109:763–769.
  • Marois Y, Pâris E, Zhang Z, et al. Vascugraft® microporous polyesterurethane arterial prosthesis as a thoraco-abdominal bypass in dogs. Biomaterials. 1996;17:1289–1300.
  • Bergmeister H, Grasl C, Walter I, et al. Electrospun small‐diameter polyurethane vascular grafts: ingrowth and differentiation of vascular‐specific host cells. Artif Organs. 2012;36:54–61.
  • Singh C, Wong CS, Wang X. Medical textiles as vascular implants and their success to mimic natural arteries. J Funct Biomater. 2015;6:500–525.
  • Mangialardi N, Ronchey S, Malaj A, et al. Case report of an endovascular repair of a residual type A dissection using a not CE not FDA-approved Najuta thoracic stent graft system. Medicine (Baltimore). 2015;94:e436.
  • Quint LE, Francis IR, Williams DM, et al. Synthetic interposition grafts of the thoracic aorta: postoperative appearance on serial CT studies 1. Radiology. 1999;211:317–324.
  • Ozpak B, Ilhan G. Biosynthetic versus polytetrafluoroethylene graft in extra-anatomical bypass surgery of Takayasu arteritis patients with supra-aortic disease. J Cardiovasc Thorac Res. 2015;7:101.
  • Thubrikar ML, Robicsek JF, Al-Soudi J, et al. Mechanical properties of abdominal aortic aneurysm wall. J Med Eng Technol. 2001;25:133–142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.