449
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Pre-clinical evaluation of the mechanical properties of a low-stiffness cement-injectable hip stem

, , , &
Pages 681-691 | Received 05 Sep 2017, Accepted 16 Oct 2017, Published online: 07 Nov 2017

References

  • Michelson JD, Riley LH. Considerations in the comparison of cemented and cementless total hip prostheses. J Arthroplasty. 1989;4:327–334.
  • Rothman RH, Cohn JC. Cemented versus cementless total hip arthroplasty: A critical review. Clin Orthop Rel Res. 1990;254:153–169.
  • Ni GX, Lu WW, Chiu KY, et al. Cemented or uncemented femoral component in primary total hip replacement? A review from a clinical and radiological perspective. J Orthop Surg (Hong Kong). 2005;13:96–105.
  • Olsson E, Goldie I, Wykman A. Total hip replacement. A comparison between cemented (Charnley) and non-cemented (HP Garches) fixation by clinical assessment and objective gait analysis. Scand J Rehabil Med. 1986;18:107–116.
  • Wykman A, Olsson E, Axdorph G, et al. Total hip arthroplasty. A comparison between cemented and press-fit noncemented fixation. J Arthroplasty. 1991;6:19–29.
  • Laupacis A, Bourne R, Rorabeck C, et al. Comparison of total hip arthroplasty performed with and without cement. a Randomized Trial. J Bone Joint Surg Am. 2002;84:1823–1828.
  • Bourne RB, Corten K. Cemented versus cementless stems: a verdict is in. Orthopedics. 2010;33:638
  • Pennington M, Grieve R, Sekhon JS, et al. Cemented, cementless, and hybrid prostheses for total hip replacement: Cost effectiveness analysis. Br Med J. 2013;346:f1026.
  • Graves SE, Davidson D, Steiger RD, et al. The Australian orthopaedic association national joint replacement registry, annual report 2015, [cited 2016 Jan 24]. Available from: https://aoanjrr.sahmri.com/annual-reports-2015
  • Green M, Gregg P, Porter M, Price A, et al. 12th annual report, National joint registry for England, Wales and Northern Ireland: 2015, [cited 2016 Jan 24] Available from: http://www.njrcentre.org.uk/njrcentre/Reports,PublicationsandMinutes/Annualreports/tabid/86/Default.aspx.
  • Rothwell A, Devane P, Mohammed K, et al. 16th annual report, New Zealand joint registry report, 2014, [cited 2016 Jan 24]. Available from: http://www.nzoa.org.nz/nz-joint-registry.
  • Knezovich JP, Lewallen DG, Etkin CD, et al. American joint replacement registry, annual report, 2014, [cited 2016 Jan 24]. Available from: http://www.ajrr.net/images/annual_reports/AJRR_2014_Annual_Report_final_11-11-15.pdf
  • Metcalfe S, Ji H, Molodianovitsh K, et al. Hip and knee replacements in Canada, Canadian joint replacement registry, annual report, 2015, [cited 2016 Jan 24] Available from: https://secure.cihi.ca/free_products/CJRR_2015_Annual_Report_EN.pdf
  • Hailer NP, Garellick G, Kärrholm J. Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register: evaluation of 170,413 operations. Acta Orthopaedica. 2010;81:34–41.
  • Hooper GJ, Rothwell AG, Stringer M, et al. Revision following cemented and uncemented primary total hip replacement: a seven-year analysis from the New Zealand Joint Registry. J Bone Joint Surg Br. 2009;91:451–458.
  • Baleani M, Cristofolini L, Toni A. Initial stability of a new hybrid fixation hip stem: Experimental measurement of implant-bone micromotion under torsional load in comparison with cemented and cementless stems. J Biomed Mater Res. 2000;50:605–615.
  • Viceconti M, Cristofolini L, Baleani M, et al. Pre-clinical validation of a new partially cemented femoral prosthesis by synergetic use of numerical and experimental methods. J Biomech. 2001;34:723–731.
  • Scarpa F, Panayiotou P, Tomlinson G. Numerical and experimental uniaxial loading on in-plane auxetic honeycombs. J Strain Anal Eng Des. 2000;35:383–388.
  • Bianchi M, Scarpa FL, Smith CW. Stiffness and energy dissipation in polyurethane auxetic foams. J Mater Sci. 2008;43:5851–5860.
  • Bezazi A, Scarpa F. Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading. Int J Fatigue. 2007;29:922–930.
  • Yang L, Harrysson O, West H, et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int J Solids Struct. 2015;69:475–490.
  • Heinl P, Rottmair A, Körner C, et al. Cellular titanium by selective electron beam melting. Adv Eng Mater. 2007;9:360–364.
  • Bhavar V, Kattire P, Patil V, et al. A review on powder bed fusion technology of metal additive manufacturing. International Conference & Exhibition on Additive Manufacturing Technologies Bangalore, India; 2015.
  • Harrysson OLA, Cansizoglu O, Marcellin-Little DJ, et al. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C. 2008;28:366–373.
  • Arcam EBM system, Ti6Al4V ELI Titanium Alloy, [cited 2016 March 7]. Available from: http://www.arcam.com/wp-content/uploads/Arcam-Ti6Al4V-ELI-Titanium-Alloy.pdf.
  • Marin E, Fusi S, Pressacco M, et al. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: trabecular titanium. J Mech Behav Biomed Mater. 2010;3:373–381.
  • Timoshenko S, Goodier J. Theory of elasticity. New York: McGraw-Hill; 1970.
  • Papini M, Trépanier CD, Third generation composite femur. Biomechanics European Laboratory: The BEL Repository. [cited 2016 April 1] Available from: https://www.biomedtown.org/biomed_town/LHDL/Reception/datarepository/repositories/BelRepWikiPages/3rdGenerationCompositeFemurASolidModel
  • Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–871.
  • Pawlikowski M, Skalski K, Haraburda M. Process of hip joint prosthesis design including bone remodeling phenomenon. Comput Struct. 2003;81:887–893.
  • Peng L, Bai J, Zeng X, et al. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys. 2006;28:227–233.
  • Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–2175.
  • Rancourt D, Shirazi-Adl A, Drouin G, et al. Friction properties of the interface between porous-surfaced metals and tibial cancellous bone. J Biomed Mater Res. 1990;24:1503–1519.
  • Sakai R, Takahashi A, Takahira N, et al. Hammering force during cementless total hip arthroplasty and risk of microfracture. Hip. 2011;21:330–335.
  • Simões JA, Marques AT. Design of a composite hip femoral prosthesis. Mater Des. 2005;26:391–401.
  • De Santis R, Ambrosio L, Nicolais L. Polymer-based composite hip prostheses. J Inorg Biochem. 2000;79:97–102.
  • Trebse R, Milosev I, Kovac S, et al. Poor results from the isoelastic total hip replacement: 14-17-year follow-up of 149 cementless prostheses. Acta Orthop. 2005;76:169–176.
  • Adam F, Hammer DS, Pfautsch S, et al. Early failure of a press-fit carbon fiber hip prosthesis with a smooth surface. J Arthroplasty. 2002;17:217–223.
  • Marcellin-Little DJ, Cansizoglu O, Harrysson OLA, et al. In vitro evaluation of a low-modulus mesh canine prosthetic hip stem. Am J Vet Res. 2010;71:1089–1095.
  • Harrison N, Field JR, Quondamatteo F, et al. Preclinical trial of a novel surface architecture for improved primary fixation of cementless orthopaedic implants. Clin Biomech. 2014;29:861–868.
  • Yamaguchi K, Masuhara K, Ohzono K, et al. Evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. The influence of the extent of porous coating. J Bone Joint Surg Am. 2000;82:1426–1431.
  • Brown PW, Chow LC, A new calcium phosphate, water-setting cement. In: Brown PW, editor, Westerville, Ohio: Cements Research Progress, American Ceramic Society; 1987. p. 352–379.
  • Ikenaga M, Hardouin P, Lemaître J, et al. Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics. J Biomed Mater Res. 1998;40:139–144.
  • Munting E, Mirtchi AA, Lemaitre J. Bone repair of defects filled with a phosphocalcic hydraulic cement: an in vivo study. J Mater Sci: Mater Med. 1993;4:337–344.
  • Ohura K, Bohner M, Hardouin P, et al. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J Biomed Mater Res. 1996;30:193–200.
  • Maruyama M. Hydroxyapatite-clay bone fixation for loaded implants. J Biomed Mater Res. 1995;29:683–686.
  • Constantz BR, Ison IC, Fulmer MT, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science. 1995;267:1796–1799.
  • Schildhauer TA, Bauer TW, Josten C, et al. Open reduction and augmentation of internal fixation with an injectable skeletal cement for the treatment of complex calcaneal fractures. J Orthop Trauma. 2000;14:309–317.
  • Webb JCJ, Spencer RF. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br. 2007;89:851–857.
  • “Implants for surgery – Acrylic bone cements”, ISO5833, 2002.
  • Gbureck U, Barralet JE, Spatz K, et al. Ionic modification of calcium phosphate cement viscosity. Part I: Hypodermic injection and strength improvement of apatite cement. Biomaterials 2004;25:2187–2195.
  • Ambard AJ, Mueninghoff L. Calcium phosphate cement: Review of mechanical and biological properties. J Prosthodont. 2006;15:321–328.
  • Hribar G, Žnidaršič A, Maver U, Calcium phosphate as a biomaterial and its use in biomedical applications. In: Akita D, Iwate C, editors. Phosphates: sources, properties and applications. Nova Science Publishers; 2012. p. 43–81.
  • Kennedy EA, Hurst WJ, Stitzel JD, et al. Lateral and posterior dynamic bending of the mid-shaft femur: fracture risk curves for the adult population. Stapp Car Crash J. 2004;48:27–51.
  • Oshkour AA, Osman NA, Yau YH, et al. Design of new generation femoral prostheses using functionally graded materials: a finite element analysis. Proc Inst Mech Eng H. 2013;227:3–17.
  • Baharuddin MY, Salleh SH, Zulkifly AH, et al. Design process of cementless femoral stem using a nonlinear three dimensional finite element analysis. BMC Musculoskelet Disord. 2014;15:1.
  • Bougherara H, Zdero R, Shah S, et al. A biomechanical assessment of modular and monoblock revision hip implants using FE analysis and strain gage measurements. J Orthop Surg Res. 2010;5:34.
  • Rezaei F, Hassani K, Solhjoei N, et al. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study. Australas Phys Eng Sci Med. 2015;38:569–580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.