553
Views
11
CrossRef citations to date
0
Altmetric
Review

Computational modeling of blast induced whole-body injury: a review

&
Pages 88-104 | Received 07 Nov 2016, Accepted 22 Jan 2018, Published online: 23 Feb 2018

References

  • Stuhmiller J, Phillips HY, Richmond D. The physics and mechanisms of primary blast injury. In: Conventional warfare: ballistic, blast, and burn injuries. Washington, DC: Office of the Surgeon General of the US Army; 1991.p. 241–270.
  • Born CT. Blast trauma: the fourth weapon of mass destruction. Scand J Surg. 2004;94:279–285.
  • Phillips YY. Primary blast injuries. Ann Emerg Med. 1986;15:1446–1450.
  • Katz E, Ofek B, Adler J, et al. Primary blast injury after a bomb explosion in a civilian bus. Ann Surg. 1989;209:484.
  • Jenson D, Unnikrishnan V. Multiscale simulation of ballistic composites for blast induced traumatic brain injury mitigation. In: ASME 2014 International Mechanical Engineering Congress and Exposition; 2014, p. V009T12A072.
  • Jenson D, Unnikrishnan VU. Energy dissipation of nanocomposite based helmets for blast-induced traumatic brain injury mitigation. Compos Struct. 2015;121:211–216.
  • Courtney AC, Andrusiv LP, Courtney MW. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects. Rev Sci Instrum. 2012;83:045111.
  • Reneer DV, Hisel RD, Hoffman JM, et al. A multi-mode shock tube for investigation of blast-induced traumatic brain injury. J Neurotrauma. 2011;28:95–104.
  • Chanda A, Graeter R, Unnikrishnan V. Effect of blasts on subject-specific computational models of skin and bone sections at various locations on the human body. AIMS Mater Sci. 2015;2:425–447.
  • Bir C. Measuring blast-related intracranial pressure within the human head. DTIC Document; 2011.
  • Sweden C. Shell shock revisited: solving the puzzle of blast trauma; 2008.
  • Long JB, Bentley TL, Wessner KA, et al. Blast overpressure in rats: recreating a battlefield injury in the laboratory. J Neurotrauma. 2009;26:827–840.
  • Desmoulin GT, Dionne J-P. Blast-induced neurotrauma: surrogate use, loading mechanisms, and cellular responses. J Trauma Acute Care Surg. 2009;67:1113–1122.
  • LeBlanc J, Shukla A, Rousseau C, et al. Shock loading of three-dimensional woven composite materials. Compos Struct. 2007;79:344–355.
  • Christou GA. Development of a helmet liner for protection against blast induced trauma. Massachusetts Institute of Technology; 2010.
  • Jackson M, Shukla A. Performance of sandwich composites subjected to sequential impact and air blast loading. Compos Part B Eng. 2011;42:155–166.
  • Tekalur SA, Bogdanovich AE, Shukla A. Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core. Compos Sci Technol. 2009;69:736–753.
  • Thiruppukuzhi SV, Sun C. Testing and modeling high strain rate behavior of polymeric composites. Compos Part B Eng. 1998;29:535–546.
  • Qiao P, Yang M, Bobaru F. Impact mechanics and high-energy absorbing materials: review. J Aerosp Eng. 2008;21:235–248.
  • Lv L, Gu B. Transverse impact damage and energy absorption of three-dimensional orthogonal hybrid woven composite: experimental and FEM simulation. J Compos Mater. 2008;2:1763–1786.
  • Goldberg RK. Computational simulation of the high strain rate tensile response of polymer matrix composites. Nasa/Tm. 2002;2002:211489.
  • Ryou H, Chung K, Lim J-H. Mechanical analysis of woven composites at high strain rates and its application to predicting impact behavior. Met Mater Int. 2008;14:679–687.
  • Chanda A, Unnikrishnan V. Subject-specific computational study of blast induced traumatic injuries. Presented at the Society of Engineering Science 52nd Annual Technical Meeting, College Station, TX; 2015.
  • Reddy JN. An introduction to the finite element method. Vol. 2. New York: McGraw-Hill; 1993.
  • Spitzer VM, Whitlock DG. The visible human dataset: the anatomical platform for human simulation. Anat Rec. 1998;253:49–57.
  • Selvan V, Ganpule S, Kleinschmit N, et al. Blast wave loading pathways in heterogeneous material systems – experimental and numerical approaches. J Biomech. Eng. 2013;135:061002.
  • Effgen GB, Hue CD, Vogel E, III, et al. A multiscale approach to blast neurotrauma modeling: part II: methodology for inducing blast injury to in vitro models. Front Neurol. 2012;3:23.
  • LawrenceMathias S, Gee DK, Olsen M, Simulation assisted risk assessment: blast overpressure modeling (PSAM-0197). In Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM); 2006.
  • Hull J. Traumatic amputation by explosive blast: pattern of injury in survivors. Br J Surg. 1992;79:1303–1306.
  • DePalma RG, Burris DG, Champion HR, et al. Blast injuries. N Engl J Med. 2005;352:1335–1342.
  • Wightman JM, Gladish SL. Explosions and blast injuries. Ann Emerg Med. 2001;37:664–678.
  • Gondusky JS, Reiter MP. Protecting military convoys in Iraq: an examination of battle injuries sustained by a mechanized battalion during Operation Iraqi Freedom II. Mil Med. 2005;170:546.
  • Beekley AC, Blackbourne LH, Sebesta JA, et al. Selective nonoperative management of penetrating torso injury from combat fragmentation wounds. J Trauma Acute Care Surg. 2008;64:S108–S117.
  • Xydakis MS, Fravell MD, Nasser KE, et al. Analysis of battlefield head and neck injuries in Iraq and Afghanistan. Otolaryngol Head Neck Surg. 2005;133:497–504.
  • Hayda R, Harris RM, Bass CD. Blast injury research: modeling injury effects of landmines, bullets, and bombs. Clin Orthop Relat Res. 2004;422:97–108.
  • Breeze J, Allanson-Bailey LS, Hunt NC, et al. Mortality and morbidity from combat neck injury. J Trauma Acute Care Surg. 2012;72:969–974.
  • Chanda A, Unnikrishnan V, Flynn Z. Biofidelic human skin simulant. US 62/189,504 Patent; 2015.
  • Chanda A, Flynn Z, Unnikrishnan V. Biofidelic Vaginal Tissue Surrogate, US Provisional Patent 62/263,942 Patent; 2015.
  • Chanda A, Unnikrishnan V, Roy VS, et al. Computational modeling of the female pelvic support structures and organs to understand the mechanism of pelvic organ prolapse: a review. Appl Mech Rev. 2015;67:040801.
  • Chanda A, Callaway C, Clifton C, et al. Biofidelic human brain tissue surrogates. Mech Adv Mater Struc. 2016 [Sep 20]; [7 p.]. DOI:10.1080/15376494.2016.1143749
  • Chanda A, Unnikrishnan V, Clifton VC, et al. Patient-specific biofidelic human coronary artery surrogates. US Provisional Patent (Pending Filing) Patent; 2016.
  • Chanda A, Unnikrishnan V, Richter HE, et al. A biofidelic computational model of the female pelvic system to understand effect of bladder fill and progressive vaginal tissue stiffening due to prolapse on anterior vaginal wall. Int J Numer Method Biomed Eng. 2016;32:e02767.
  • Ganpule S, Chandra GN, Salzar R. Mechanics of blast loading on post-mortem human heads in the study of traumatic brain injury (TBI) using experimental and computational approaches [thesis]. J Neurotrauma. University of Nebraska-Lincoln; 2013.
  • Ganpule S, Chandra N. Mechanics of interaction of blast waves on surrogate head: effect of head orientation. Presented at the ASME 2013 Summer Bioengineering Conference; 2013.
  • Ganpule S, Gu L, Alai A, et al. Role of helmet in the mechanics of shock wave propagation under blast loading conditions. Comput Methods Biomech Biomed Eng. 2012;15:1233–1244.
  • Ganpule S, Gu L, Cao G, et al. The effect of shock wave on a human head. In ASME 2009 International Mechanical Engineering Congress and Exposition; 2009. p. 339–346.
  • Ganpule S, Gu L, Chandra N. MRI-based three dimensional modeling of blast traumatic brain injury (bTBI). In: ASME 2010 International Mechanical Engineering Congress and Exposition; 2010. p. 181–183.
  • Chafi MS, Ganpule S, Gu L, et al. Dynamic response of brain subjected to blast loadings: influence of frequency ranges. Int J Appl Mech. 2011;3:803–823.
  • Chandra N, Ganpule S, Kleinschmit N, et al. Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling. Shock Waves. 2012;22:403–415.
  • Gu L, Chafi MS, Ganpule S, et al. The influence of heterogeneous meninges on the brain mechanics under primary blast loading. Compos Part B Eng. 2012;43:3160–3166.
  • Gupta RK, Przekwas A. Mathematical models of blast-induced TBI: current status, challenges, and prospects. Front Neurol. 2013;4:59. doi: 10.3389/fneur.2013.00059
  • Kangarlou K. Mechanics of blast loading on the head models in the study of traumatic brain injury. Nationalpark-Forschung in Der Schweiz (Switzerland Res Park J) 2013;102:1571–1581.
  • Kulkarni S, Gao X-, Horner L, et al. Ballistic helmets – their design, materials, and performance against traumatic brain injury. Compos Struct. 2013;101:313–331.
  • Hooker D. Physiological effects of air concussion. Am J Physiol – Legacy Content. 1924;67:219–274.
  • White CS. Tentative biological criteria for assessing potential hazards from nuclear explosions. DTIC Document; 1963.
  • Richmond DR, Damon EG, Bowen IG, et al. Air-blast studies with eight species of mammals. DTIC Document; 1966.
  • Richmond DR, Damon EG, Fletcher ER, et al. The relationship between selected blast‐wave parameters and the response of mammals exposed to air blast*. Ann N Y Acad Sci. 1968;152:103–121.
  • Bowen IG, Fletcher ER, Richmond DR. Estimate of man's tolerance to the direct effects of air blast. DTIC Document; 1968.
  • Panzer MB, Cameron R, Rafaels KA, et al. Primary blast survival and injury risk assessment for repeated blast exposures. J Trauma Acute Care Surg. 2012;72:454–466.
  • Axelsson H, Yelverton JT. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment. J Trauma Acute Care Surg. 1996;40:31S–37S.
  • Johnson DL, Yelverton J, Hicks TW, et al. Blast overpressure studies with animals and man: biological response to complex blast waves. DTIC Document; 1993.
  • Stuhmiller JH. Biological response to blast overpressure: a summary of modeling. Toxicology. 1997;121:91–103.
  • Greer A. Numerical modeling for the prediction of primary blast injury to the lung; 2007.
  • Bass CR, Rafaels KA, Salzar RS. Pulmonary injury risk assessment for short-duration blasts. J Trauma Acute Care Surg. 2008;65:604–615.
  • White CS, Jones RK, Damon EG, et al. The biodynamics of air blast. DTIC Document; 1971.
  • Zachary J, Frizzell L, Abbott J, et al. Selected biological properties of tissues: potential determinants of susceptibility to ultrasound-induced bioeffects. J Ultrasound Med. 2000;19:85–96.
  • Iremonger M. Physics of detonations and blast waves, Scientific foundations of trauma. New York (NY): Butterworth-Heinemann; 1997. p. 189–199.
  • Hyde D. ConWep 2.1. 0.8 [Computer software]. US Army Engineer Research & Development Center; Vicksburg, Mississippi; 2004.
  • Richmond D, Sanchez R, Goldizen Clare VV, et al. Biological effects of overpressure: a shock tube utilized to produce sharp-rising overpressures of 400 milliseconds duration and its employment in biomedical experiments. Aerosp Med. 1961;32:997.
  • Gefen A, Elad D, Shiner R. Analysis of stress distribution in the alveolar septa of normal and simulated emphysematic lungs. J Biomech. 1999;32:891–897.
  • Gefen A, Halpern P, Shiner RJ, et al. Analysis of mechanical stresses within the alveolar septa leading to pulmonary edema. Technol Health Care. 2001;9:257–268.
  • Argyros GJ. Management of primary blast injury. Toxicology 1997;121:105–115.
  • Yang Z, Wang Z, Tang C, et al. Biological effects of weak blast waves and safety limits for internal organ injury in the human body. J Trauma Acute Care Surg. 1996;40:81S–84S.
  • Januszkiewicz AJ, Mundie TG, Dodd KT. Maximal exercise performance-impairing effects of simulated blast overpressure in sheep. Toxicology. 1997;121:51–63.
  • Stuhmiller J, Chuong C, Phillips MPY, et al. Computer modeling of thoracic response to blast. J Trauma. 1988;28:S132–S139.
  • Stuhmiller JH, Ho KH-H, Vander Vorst MJ, et al. A model of blast overpressure injury to the lung. J Biomech. 1996;29:227–234.
  • Przekwas A, Yang H, Furmanczyk M, et al. Virtual multiscale model of human lung injury from explosion blasts. In: Proceedings of Medicine Meets Virtual Reality Conference, Long Beach, CA; 2005. p. 26–29.
  • Greer A, Cronin D, Salisbury C, et al. Finite element modeling for the prediction of blast trauma. In: IUTAM symposium on impact biomechanics: from fundamental insights to applications; 2005. p. 263–271.
  • Moore DF, Radovitzky R, Shupenko A, et al. Blast physics and central nervous system injury; 2008.
  • Cernak I, Savic J, Ignjatovic D, et al. Blast injury from explosive munitions. J Trauma. 1999;47:96–103.
  • Chen WW, Song B. Split Hopkinson (Kolsky) bar: design, testing and applications. New York: Springer Science & Business Media; 2010.
  • Casson IR, Viano DC, Pellman EJ. Synopsis of the National Football League player health and safety meeting: Chicago, Illinois, June 19, 2007. Neurosurgery. 2008;62:204–210.
  • Zhang L, Yang KH, King AI. A proposed injury threshold for mild traumatic brain injury. J Biomech Eng. 2004;126:226–236.
  • Moore DF, Jérusalem A, Nyein M, et al. Computational biology—modeling of primary blast effects on the central nervous system. Neuroimage. 2009;47:T10–T20.
  • Lagravère MO, Carey J, Toogood RW, et al. Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofacial Orthop. 2008;134:112–116.
  • Hyde D. CONWEP: Conventional weapons effects program. US Army Engineer Waterways Experiment Station, USA; 1991.
  • Harlan J, Jr, Pieramici DJ. Evaluation of patients with ocular trauma. Ophthalmol Clin North Am. 2002;15:153–161.
  • Weichel ED, Colyer MH. Combat ocular trauma and systemic injury. Curr Opin Ophthalmol. 2008;19:519–525.
  • Abbotts R, Harrison S, Cooper G. Primary blast injuries to the eye: a review of the evidence. J R Army Med Corps. 2007;153:119–123.
  • Ritchie JV, Horne ST, Perry J, et al. Ultrasound triage of ocular blast injury in the military emergency department. Mil Med. 2012;177:174–178.
  • Quere M, Bouchat J, Cornand G. Ocular blast injuries. Am J Ophthalmol. 1969;67:64–69.
  • Rossi T, Boccassini B, Esposito L, et al. The pathogenesis of retinal damage in blunt eye trauma: finite element modeling. Investig Ophthalmol Vis Sci. 2011;52:3994–4002.
  • Alphonse VD. Injury biomechanics of the human eye during Blunt and Blast loading; 2012.
  • Stitzel JD, Weaver AA. Computational simulations of ocular blast loading and prediction of eye injury risk. In ASME 2012 Summer Bioengineering Conference; 2012. p. 425–426.
  • Liu X, Wang L, Wang C, et al. Mechanism of traumatic retinal detachment in blunt impact: a finite element study. J Biomech. 2013;46:1321–1327.
  • Rossi T, Boccassini B, Esposito L, et al. Primary blast injury to the eye and orbit: finite element modeling. Investig Ophthalmol Vis Sci. 2012;53:8057–8066.
  • Esposito L, Clemente C, Bonora N, et al. Modelling human eye under blast loading. Comput Methods Biomech Biomed Eng. 2015;18:107–115.
  • Bailoor S, Bhardwaj R, Nguyen TD. Effectiveness of eye armor during blast loading. In: ASME 2013 Summer Bioengineering Conference; 2013. p. V01BT55A010.
  • Wright A. Anatomy and ultrastructure of the human ear. Scott-Brown’s Otolaryngol. 1997;1:1–50.
  • Funnell WRJ, Laszlo CA. Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am. 1978;63:1461–1467.
  • Wada H, Metoki T, Kobayashi T. Analysis of dynamic behavior of human middle ear using a finite‐element method. J Acoust Soc Am. 1992;92:3157–3168.
  • Koike T, Wada H, Kobayashi T. Modeling of the human middle ear using the finite-element method. J Acoust Soc Am. 2002;111:1306–1317.
  • Sun Q, Gan R, Chang K-H, et al. Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol. 2002;1:109–122.
  • Kelly D, Prendergast PJ, Blayney A. The effect of prosthesis design on vibration of the reconstructed ossicular chain: a comparative finite element analysis of four prostheses. Otol Neurotol. 2003;24:11–19.
  • Gan RZ, Feng B, Sun Q. Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng. 2004;32:847–859.
  • Gan RZ, Reeves BP, Wang X. Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng. 2007;35:2180–2195.
  • Gan RZ, Sun Q, Feng B, et al. Acoustic–structural coupled finite element analysis for sound transmission in human ear—Pressure distributions. Med Eng Phys. 2006;28:395–404.
  • Gan RZ, Cheng T, Dai C, et al. Finite element modeling of sound transmission with perforations of tympanic membrane. J Acous Soc Am. 2009;126:243–253.
  • Voss SE, Rosowski JJ, Merchant SN, et al. Middle-ear function with tympanic-membrane perforations. I. Measurements and mechanisms. J Acoust Soc Am. 2001;110:1432–1444.
  • Voss SE, Rosowski JJ, Merchant SN, Peake WT. How do tympanic-membrane perforations affect human middle-ear sound transmission? Acta Oto-laryngol, 2001;121:169–173.
  • Voss SE, Rosowski JJ, Merchant SN, et al. Non-ossicular signal transmission in human middle ears: experimental assessment of the acoustic route with perforated tympanic membranes. J Acoust Soc Am. 2007;122:2135–2153.
  • Mehta RP, Rosowski JJ, Voss SE, et al. Determinants of hearing loss in perforations of the tympanic membrane. Otol Neurotol. 2006;27:136.
  • Ahmad S, Ramani G. Hearing loss in perforations of the tympanic membrane. J Laryngol Otol. 1979;93:1091–1098.
  • Santa Maria PL, Atlas MD, Ghassemifar R. Chronic tympanic membrane perforation: a better animal model is needed. Wound Repair Regen. 2007;15:450–458.
  • Bigelow DC, Swanson PB, Saunders JC. The effect of tympanic membrane perforation size on umbo velocity in the rat. Laryngoscope. 1996;106:71–76.
  • Roberts J, Ward E, Harrigan T, et al. Development of a human head-neck computational model for assessing blast injury. In: ASME 2009 International Mechanical Engineering Congress and Exposition; 2009. p. 95–96.
  • Roberts J, Harrigan T, Ward E, et al. Human head-neck computational model for assessing blast injury. J Biomech. 2012;45:2899–2906.
  • Kleiven S, Hardy WN. Correlation of an FE model of the human head with local brain motion–consequences for injury prediction. Stapp Car Crash J. 2002;46:123–144.
  • Zhang L, Yang KH, King AI. Comparison of brain responses between frontal and lateral impacts by finite element modeling. J Neurotrauma. 2001;18:21–30.
  • Sharma S, Zhang L. Prediction of intracranial responses from blast induced neurotrauma using a validated finite element model of human head. In Proceedings of Injury Biomechanics Symposium (IBS); 2011.
  • Leonardi ADC, Bir CA, Ritzel DV, et al. Intracranial pressure increases during exposure to a shock wave. J Neurotrauma. 2011;28:85–94.
  • O’Donoghue D, Gilchrist M. Strategies for modelling brain impact injuries. Irish J Med Sci. 1998;167:263–264.
  • Ommaya AK. Head injury mechanisms and the concept of preventive management: a review and critical synthesis. J Neurotrauma. 1995;12:527–546.
  • Rezaei A, Salimi Jazi M, Karami G, et al. A computational study on brain tissue under blast: primary and tertiary blast injuries. Int J Numer Meth Biomed Eng. 2014;30:781–795.
  • Chaloner E. Blast injury in enclosed spaces. BMJ. 2005;331:119–120.
  • Dosquet F, Nies O, Lammers C. Test methodology for protection of vehicles occupants against IED. In Proceedings of 18th Symposium of Military Aspects of Shock and Blast, Bad Reichenhall, Germany; 2004.
  • Pandelani T, Reinecke D, Beetge F. Evaluation of the South African surrogate leg for landmine protection injury measurements; 2010.
  • Yoganandan NA, Pintar F, Boynton A, et al. Dynamic axial tolerance of the human foot-ankle complex. In: Proceedings: Stapp Car Crash Conference; 1996. p. 207–218.
  • McKay BJ, Bir CA. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events. Stapp Car Crash J. 2009;53:229.
  • Quenneville CE, McLachlin SD, Greeley GS, et al. Injury tolerance criteria for short-duration axial impulse loading of the isolated tibia. J Trauma Acute Care Surg. 2011;70:E13–E18.
  • Nilakantan G, Tabiei A. Computational assessment of occupant injury caused by mine blasts underneath infantry vehicles. Int J Vehicle Struct Syst. 2009;1:50–58.
  • Mahi S, Feng Z. Finite element evaluation of human body response to vertical impulse loading. Blucher Mech Eng Proc. 2012;1:1809–1818.
  • Kraft RH, Lynch ML, Vogel EW, III. Computational failure modeling of lower extremities. DTIC Document; 2012.
  • Fielding RA, Kraft RH, Przekwas A, et al. Development of a lower extremity model for high strain rate impact loading. Int J Exp Comput Biomech. 2015;3:161–186.
  • BertucciLiao RJ, Williams L. Development of a lower extremity model for finite element analysis at blast condition. In ASME 2011 Summer Bioengineering Conference; 2011. p. 1035–1036.
  • ChengRizer HA, Obergefell LA. Articulated total body model version V. USAFRL, Human Effectiveness Directorate, Crew Survivability and Logistics Division, WPAFB; 1998.
  • Balakrishnan P, Storey K. The application of MADYMO in side airbag development. In: Proceedings of the Fifth International Madymo User's Meeting, November 3–4, Fort Lauderdale, USA; 1994.
  • Hahm S-j, Won Y-h, Kim D-s. Frontal crash feasibility study using MADYMO 3D frame model. SAE Technical Paper 0148-7191; 1999.
  • Lupkerde Coo H, Nieboer PJ, Wismans J. Advances in MADYMO crash simulations. SAE Technical Paper; 1991.
  • Deshpande B, Gunasekar T, Gupta V, et al. Development of MADYMO models of passenger vehicles for simulating side impact crashes. SAE Technical Paper 0148-7191; 1999.
  • Maltha J, Wismans J, MADYMO-Crash victim simulations, a computerised research and design tool; 1980.
  • Steffan H, Moser A, Geigl B, et al. Validation of the coupled PC-CRASH-MADYMO occupant simulation model. SAE Technical Paper 0148-7191; 2000.
  • Huang Y, King AI, Cavanaugh JM. A MADYMO model of near-side human occupants in side impacts. J Biomech Eng. 1994;116:228–235.
  • Wismans J, Hermans J. MADYMO 3D simulations of Hybrid III dummy sled tests. SAE Technical Paper; 1988.
  • Van Wijk J, Wismans J, Maltha J, et al. MADYMO pedestrian simulations. SAE Technical Paper 0148-7191; 1983.
  • Hutton BF, Kyme AZ, Lau YH, et al. A hybrid 3-D reconstruction/registration algorithm for correction of head motion in emission tomography. IEEE Trans Nucl Sci. 2002;49:188–194.
  • Schulz WA, Faul I. Hybrid 3-D probe tracked by multiple sensors. Google Patents; 2003.
  • Iwamoto M, Kisanuki Y, Watanabe I, et al. Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction. In: Proceedings of the International Research Council on the Biomechanics of Injury conference; 2002. p. 12.
  • Sugimoto T, Yamazaki K. First results from the JAMA human body model project. Europe (HUMOS: Human Model for Safety) 2005;3:4.
  • Haug E. H-model overview description. In Proceedings of the Twenty-Ninth International Workshop on Human Subjects for Injury Biomechanics Research; 2001.
  • Yamano H, Fujita S, Suzuki T, et al. SIMMER-III: a computer program for LMFR core disruptive accident analysis. Version 2. H model summary and program description, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); 2000.
  • Tropiano P, Thollon L, Arnoux PJ, et al. Using a finite element model to evaluate human injuries application to the HUMOS model in whiplash situation. Spine. 2004;29:1709–1716.
  • Robin S. HUMOS: human model for safety – a joint effort towards the development of refined human-like car occupant models. In: 17th international technical conference on the enhanced safety vehicle; 2001. p. 297.
  • Fressmann D, Munz T, Graf O, et al. FE human modeling in crashing – aspects of numerical modeling and current applications in the automotive industry. LS-DYNA Anwenderforum; 2007.
  • Tan X, Przekwas A, Rule G, et al. Modeling articulated human body dynamics under a representative blast loading. In: ASME 2011 International Mechanical Engineering Congress and Exposition; 2011. p. 71–78.
  • von Gierke HE. Biodynamic models and their applications. J Acoust Soc Am. 1971;50:1397–1413.
  • Imielinska C, Przekwas A, Tan X. Multi-scale modeling of trauma injury. In: Proceedings of Computational Science–ICCS 2006; 2006. p. 822–830.
  • Forbes P. Development of a human body model for the analysis of side impact automotive thoracic trauma; 2005.
  • Kirk D. Modeling and simulation of explosion effectiveness as a function of blast and crowd characteristics. J Def Model Simul Appl Methodol Technol 2009;6:79–95.
  • Chen YC, Smith DH, Meaney DF. In-vitro approaches for studying blast-induced traumatic brain injury. J Neurotrauma. 2009;26:861–876.
  • Bergeron DM, Coley GG, Fall RW, Assessment of lower leg injury from land mine blast–phase 2: follow up tests with a modified frangible surrogate lower leg and comparison with cadaver test data. Defence R&D Canada–Suffield; 2007.
  • Anderson CE, Behner T, Weiss CE. Mine blast loading experiments. Int J Impact Eng. 2011;38:697–706.
  • BergeronColey D, Fall GR, Anderson I, Assessment of lower leg injury from land mine blast–phase 1: test results using a frangible surrogate leg with assorted protective footwear and comparison with cadaver test data. DRDC Suffield TR. 51; 2006.
  • Ramasamy A, Hill A-M, Hepper A, et al. Blast mines: physics, injury mechanisms and vehicle protection. J R Army Med Corps. 2009;155:258–264.
  • Holmberg AD. Development and characterization of shock tubes for laboratory scale blast wave simulation; 2010.
  • Courtney E, Courtney A, Courtney M. Shock tube design for high intensity blast waves for laboratory testing of armor and combat materiel. Defence Technol. 2014;10:245–250.
  • Courtney MW, Courtney AC. Note: a table-top blast driven shock tube. Rev Sci Instrum. 2010;81:126103
  • Wang Z, Sun L, Yang Z, et al. Development of serial bio-shock tubes and their application. Chin Med J. 1998;111:109–113.
  • Thomas G, Jones A. Some observations of the jet initiation of detonation. Combust Flame. 2000;120:392–398.
  • Chojnicki K, Clarke AB, Phillips JC. shock‐tube investigation of the dynamics of gas‐particle mixtures: implications for explosive volcanic eruptions. Geophys Res Lett. 2006;33:L15309.
  • Chanda A, Ghoneim H. Pumping potential of a two-layer left-ventricle-like flexible-matrix-composite structure. Compos Struct. 2015;122:570–575.
  • Ghoneim H, Chanda A, Pumping potential of a left-ventricle-like flexiblematrix-composite structure. In: e-Proceedings of the 19th international conference on composite materials (ICCM19), Montreal Canada; 2013. p. 7457–7462.
  • Jin X, Zhu F, Mao H, et al. A comprehensive experimental study on material properties of human brain tissue. J Biomech. 2013;46:2795–2801.
  • Chatelin S, Constantinesco A, Willinger R. Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology. 2010;47:255–276.
  • Fallenstein G, Hulce VD, Melvin JW. Dynamic mechanical properties of human brain tissue. J Biomech. 1969;2:217–226.
  • Miller K, Chinzei K. Mechanical properties of brain tissue in tension. J Biomech. 2002;35:483–490.
  • Martins P, Natal Jorge R, Ferreira A. A comparative study of several material models for prediction of hyperelastic properties: application to silicone‐rubber and soft tissues. Strain. 2006;42:135–147.
  • Payne T, Mitchell S, Bibb R. Design of human surrogates for the study of biomechanical injury: a review. Crit Rev Biomed Eng. 2013;41:51–89.
  • Yannas I, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14:65–81.
  • Wang Y, Tai B, Yu LH, et al. Silicone-based tissue-mimicking phantom for needle insertion simulation. J Med Dev. 2014;8:021001.
  • Lualdi M, Colombo A, Farina B, et al. A phantom with tissue‐like optical properties in the visible and near infrared for use in photomedicine. Lasers Surg Med. 2001;28:237–243.
  • Madsen EL, Frank GR. Tissue mimicking elastography phantoms. Google Patents; 2008.
  • Kremer M, Lang E, Berger A. Organotypical engineering of differentiated composite-skin equivalents of human keratinocytes in a collagen-GAG matrix (INTEGRA Artificial Skin) in a perfusion culture system. Langenbeck's Arch Surg. 2001;386:357–363.
  • Payne T, Mitchell S, Bibb R, et al. Initial validation of a relaxed human soft tissue simulant for sports impact surrogates. Proc Eng. 2014;72:533–538.
  • Payne T, Mitchell S, Bibb R, et al. The evaluation of new multi-material human soft tissue simulants for sports impact surrogates. J Mech Behav Biomed Mater. 2015;41:336–356.
  • Shergold OA, Fleck NA, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng. 2006;32:1384–1402.
  • Unnikrishnan VU, Unnikrishnan GU, Reddy JN. Multiscale computational analysis of biomechanical systems. In: IUTAM Symposium on Multi-Functional Material Structures and Systems; 2010. p. 123–131.
  • Unnikrishnan GU. Computational modeling of biological cells and soft tissues. College Station (TX): Texas A&M University; 2008.
  • Unnikrishnan V, Unnikrishnan G, Reddy J. Biomechanics of breast tumor: effect of collagen and tissue density. Int J Mech Mater Des. 2012;8:257–267.
  • Gonzalez LYS, Botero MG, Betancur M. Hyperelastic material modeling; 2005.
  • Holzapfel GA. Nonlinear solid mechanics. 24. Chichester: Wiley; 2000.
  • Li J, Luo X, Kuang Z. A nonlinear anisotropic model for porcine aortic heart valves. J Biomech. 2001;34:1279–1289.
  • Velardi F, Fraternali F, Angelillo M. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech Model Mechanobiol. 2006;5:53–61.
  • Ogden RW. Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. New York: Springer; 2003.
  • Picinbono G, Delingette H, Ayache N. Non-linear anisotropic elasticity for real-time surgery simulation. Graph Models. 2003;65:305–321.
  • Taylor ZA, Comas O, Cheng M, et al. On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution. Med Image Anal. 2009;13:234–244.
  • Bischoff JE, Arruda EM, Grosh K. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech Model Mechanobiol. 2004;3:56–65.
  • Courtney T, Sacks M, Stankus S, et al. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials. 2006;27:3631–3638.
  • Picinbono G, Delingette H, Ayache N. Nonlinear and anisotropic elastic soft tissue models for medical simulation. In: Proceedings IEEE International Conference on 2001 ICRA Robotics and Automation; 2001. p. 1370–1375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.