97
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Low-cost multifrequency electrical impedance-based system (MFEIBS) for clinical imaging: design and performance evaluation

, , , &
Pages 274-289 | Received 13 Aug 2017, Accepted 08 May 2018, Published online: 18 Jul 2018

References

  • Kerner TE, Williams DB, Osterman KS, et al. Electrical impedance imaging at multiple frequencies in phantoms. Physiol Meas. 2000;21:67.
  • Malich A, Böhm T, Facius M, et al. Electrical impedance scanning as a new imaging modality in breast cancer detection—a short review of clinical value on breast application, limitations and perspectives. Nuclear Instrum Methods Phys Res Sect A: Accelerat Spectromet Detect Assoc Equip. 2003;497:xv–81.
  • Stojadinovic A, Nissan A, Gallimidi Z, et al. Electrical impedance scanning for the early detection of breast cancer in young women: preliminary results of a multicenter prospective clinical trial. J Clin Oncol. 2005;23:2703–2715.
  • Assenheimer M, Laver-Moskovitz O, Malonek D, et al. The T-SCANTM technology: electrical impedance as a diagnostic tool for breast cancer detection. Physiol Meas. 2001;22:1.
  • Jossinet J, Marry E, Montalibet A. Electrical impedance endo-tomography: imaging tissue from inside. IEEE Trans Med Imaging. 2002;21:560–565.
  • Lazebnik M, Popovic D, McCartney L, et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys Med Biol. 2007;52:6093.
  • Cherepenin VA, Karpov AY, Korjenevsky AV, et al. Three-dimensional EIT imaging of breast tissues: system design and clinical testing. IEEE Trans Med Imaging. 2002;21:662–667.
  • Laufer S, Ivorra A, Reuter VE, et al. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol Meas. 2010;31:995.
  • Faes TJ, Van der Meij HA, De, et al. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol Meas. 1999;20:R1.
  • Prakash S, Karnes MP, Sequin EK, et al. Ex vivo electrical impedance measurements on excised hepatic tissue from human patients with metastatic colorectal cancer. Physiol Meas. 2015;36:315.
  • Halter RJ, Hartov A, Heaney JA, et al. Electrical impedance spectroscopy of the human prostate. IEEE Trans Biomed Eng. 2007;54:2303–2307.
  • Meaney PM, Fanning MW, Li D, et al. A clinical prototype for active microwave imaging of the breast. IEEE Trans Microw Theory Techn. 2000;48: 1841;53.
  • Campbell AM, Land DV. Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz. Phys Med Biol. 1992;37:193.
  • Gabriel C, Peyman A, Grant EH. Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol. 2009;54:4863.
  • Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol. 1996;41:2271.
  • Kyle UG, Bosaeus I, De, et al. Bioelectrical impedance analysis—Part I: review of principles and methods. Clin Nutr. 2004;23:1226–1243.
  • Malone E, dos Santos GS, et al. Multifrequency electrical impedance tomography using spectral constraints. IEEE Trans Med Imaging. 2014;33:340–350.
  • Halter RJ, Zhou T, Meaney PM, et al. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience. Physiol Meas. 2009;30:6–S121.
  • Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41:2251.
  • Hassan AM, El-Shenawee M. Review of electromagnetic techniques for breast cancer detection. IEEE Rev Biomed Eng. 2011;4: 103–118.
  • Zhang X, Wang W, Sze G, et al. An image reconstruction algorithm for 3-D electrical impedance mammography. IEEE Trans Med Imaging. 2014;33:2223–2241.
  • Halter R, Hartov A, Paulsen KD. Design and implementation of a high frequency electrical impedance tomography system. Physiol Meas. 2004;25:379.
  • Halter RJ, Hartov A, Paulsen KD. A broadband high-frequency electrical impedance tomography system for breast imaging. IEEE Trans Biomed Eng. 2008;55:650–659.
  • Seo JK, Kwon O, Ammari H, et al. A mathematical model for breast cancer lesion estimation: electrical impedance technique using TS2000 commercial system. IEEE Trans Biomed Eng. 2004;51:1898–1906.
  • Klemm M, Leendertz JA, Gibbins D, et al. Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios. IEEE Trans Antennas Propag. 2010;58:2337–2344.
  • Fear EC, Stuchly MA. Microwave detection of breast cancer. IEEE Trans Microwave Theory Techn. 2000;48:1854–1863.
  • Singh G, Anand S, Lall B, IEEE, et al. Practical phantom study of low cost portable EIT based cancer screening device. In Long Island Systems. Applications and Technology Conference (LISAT) 2016 April 29, p. 1–6.
  • Singh G, Anand S, Lall B, et al. Development of a microcontroller based electrical impedance tomography system. In Long Island Systems. Applications and Technology Conference (LISAT) 2015 May 1; p. 1–4.
  • Boyle A, Adler A. The impact of electrode area, contact impedance and boundary shape on EIT images. Physiol Meas. 2011;32:745.
  • Salvador SM, Vecchi G. Experimental tests of microwave breast cancer detection on phantoms. IEEE Trans Antennas Propagat. 2009;57:4019–4012.
  • Kao TJ, Saulnier GJ, Isaacson D, et al. A versatile high-permittivity phantom for EIT. IEEE Trans Biomed Eng. 2008;55:2601–2607.
  • Gerstenmaier JF, McCarthy CJ, Brophy DP, et al. Evaluation of the particulate concentration in a gelatin‐based phantom for sonographically guided lesion biopsy. J Ultrasound Med. 2013;32:1471–1475.
  • Grewal PK, Shokoufi M, Liu J, et al. Electrical characterization of bolus material as phantom for use in electrical impedance and computed tomography fusion imaging. J Electrical Bioimpedance. 2014;5:34–39.
  • Gagnon H, Cousineau M, Adler A, et al. A resistive mesh phantom for assessing the performance of EIT systems. IEEE Trans Biomed Eng. 2010;57:2257–2266.
  • Lazebnik M, Madsen EL, Frank GR, et al. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys Med Biol. 2005;50:4245.
  • Bera TK, Nagaraju J. Electrical impedance spectroscopic studies on broiler chicken tissue suitable for the development of practical phantoms in multifrequency EIT. Chinese Sci Bull. 2003;48:1728–1763.
  • Kim M, Jang J, Kim H, et al. A 1.4-mΩ sensitivity 94-dB dynamic-range electrical impedance tomography SoC and 48-channel Hub-SoC for 3-D lung ventilation monitoring system. IEEE J Solid-State Circuits. 2017;52:2829–2842.
  • Yerworth RJ, Bayford RH, Brown B, et al. Electrical impedance tomography spectroscopy (EITS) For human head imaging. Physiol Meas. 2003;24:477.
  • Yerworth RJ, Bayford RH, Cusick G, et al. Design and performance of the UCLH Mark 1b 64 Channel electrical impedance tomography (EIT) system, optimized for imaging brain function. Physiol Meas. 2002;23:771–849.
  • Smith RW, Freeston IL, Brown BH. A real-time electrical impedance tomography system for clinical use-design and preliminary results. IEEE Trans Biomed Eng. 1995;42:133–140.
  • Hong S, Lee K, Ha U, et al. A 4.9 mΩ-sensitivity mobile electrical impedance tomography IC for early breast-cancer detection system. IEEE J Solid-State Circuits. 2015;50:245–257.
  • Oh TI, Woo EJ, Holder D. Multi-frequency EIT system with radially symmetric architecture: KHU Mark1. Physiol Meas. 2007;28:S183.
  • Wang M, Yin W, Holliday N. A highly adaptive electrical impedance sensing system for flow measurement. Meas Sci Technol. 2002;13:1884.
  • Fabrizi L, McEwan A, Oh T, et al. A comparison of two EIT systems suitable for imaging impedance changes in epilepsy. Physiol Meas. 2009;30:S103.
  • Hong S, Lee J, Bae J, et al. A 10.4 mW electrical impedance tomography SoC for portable real-time lung ventilation monitoring system. Solid-State Circuits Conference (A-SSCC) 2014. New York: IEEE Asian 2014, p. 193–196.
  • Lee S, Polito S, Agell C, et al. A low-power and compact-sized wearable bio-impedance monitor with wireless connectivity. J Phys: Conf Ser. 2013;434:012013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.