771
Views
35
CrossRef citations to date
0
Altmetric
Review

Epilepsy detection from EEG signals: a review

Pages 368-380 | Received 13 Dec 2017, Accepted 15 Aug 2018, Published online: 22 Nov 2018

References

  • Gotman J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol. 1982;54:530–540.
  • Oikonomou VP, Tzallas AT, Fotiadis DI. A Kalman filter based methodology for EEG spike enhancement. Comput Methods Programs Biomed. 2007;85:101–108.
  • James CJ. Detection of epileptiform activity in the electroencephalogram using artificial neural networks. Christchurch: University of Canterbury; 1997.
  • James CJ, Jones RD, Bones PJ, et al. Detection of epileptiform discharges in the EEG by a hybrid system comprising mimetic, self-organized artificial neural network, and fuzzy logic stages. Clin Neurophysiol. 1999;110:2049–2063.
  • Tzallas AT, Oikonomou VP, Fotiadis DI. Epileptic spike detection using a Kalman filter based approach. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society; New York, USA; 2006. pp. 501–504.
  • Gotman J. Automatic detection of seizures and spikes. J Clin Neurophysiol. 1999;16:130–140.
  • Wilson SB, Emerson R. Spike detection: a review and comparison of algorithms. Clin Neurophysiol. 2002;113:1873–1881.
  • Gotman J, Gloor P. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr Clin Neurophysiol. 1976;41:513–529.
  • Ktonas PY, Luoh WM, Kejariwal ML, et al. Computer-aided quantification of EEG spike and sharp wave characteristics. Electroencephalogr Clin Neurophysiol. 1981;51:237–243.
  • Ktonas PY. Automated analysis of abnormal electroencephalograms. Crit Rev Biomed Eng. 1982;9:39–97.
  • Davey BL, Fright WR, Carroll GJ, et al. Expert system approach to detection of epileptiform activity in the EEG. Med Biol Eng Comput. 1989;27:365–370.
  • Faure C. Attributed strings for recognition of epileptic transients in EEG. Int J Bio-Ed Comput. 1985;16:217–229.
  • Webber WRS, Litt B, Wilson K, et al. Practical detection of epileptiform discharges (EDs) in the EEG using an artificial neural network: a comparison of raw and parameterized EEG data. Electroencephalogr Clin Neurophysiol. 1994;91:194–204.
  • Wilson SB, Turner CA, Emerson RG, et al. Spike detection II: automatic, perception-based detection and clustering. Clin Neurophysiol. 1999;110:404–411.
  • Michel CM, Seeck M, Landis T. Spatiotemporal dynamics of human cognition. Physiology. 1999;14:206–214.
  • Gotman J. Noninvasive methods for evaluating the localization and propagation of epileptic activity. Epilepsia. 2003;44:21–29.
  • Nishida S, Nakamura M, Ikeda A, et al. Signal separation of background EEG and spike by using morphological filter. Med Eng Phys. 1999;21:601–608.
  • Pon LS, Sun M, Sclabassi RJ. The bi-directional spike detection in EEG using mathematical morphology and wavelet transform, Proc. IEEE International Conference on Signal Processing; 2002. pp. 1512–1515.
  • Xu G, Wang J, Zhang Q, et al. A spike detection method in EEG based on improved morphological filter. Comput Biol Med. 2007;37:1647–1652.
  • El-Gohary M, McNames J, Elsas S. User-guided interictal spike detection. Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oregon, Portland; 2008. pp. 821–824.
  • Sankar R, Natour J. Automatic computer analysis of transients in EEG. Comput Biol Med. 1992;22:407–422.
  • Goelz H, Jones RD, Bones PJ. Wavelet analysis of transient biomedical signals and its application to detection of epileptiform activity in the EEG. Clin Electroencephalogr. 2000;31:181–191.
  • Schiff SJ, Aldroubi A, Unser M, et al. Fast wavelet transformation of EEG. Electroencephalogr Clin Neurophysiol. 1994;91:442–455.
  • Senhadji L, Wendling F. Epileptic transient detection: wavelets and time-frequency approaches. Neurophysiol Clin/Clin Neurophysiol. 2002;32:175–192.
  • Senhadji L, Dillenseger JL, Wendling F, et al. Wavelet analysis of EEG for three-dimensional mapping of epileptic events. Ann Biomed Eng. 1995;23:543–552.
  • Birkemeier WP, Fontaine AB, Celesia GG, et al. Pattern recognition techniques for the detection of epileptic transients in EEG. IEEE Trans Biomed Eng. 1978;BME-25:213–217.
  • Diambra L, Malta CP. Nonlinear models for detecting epileptic spikes. Phys Rev E. 1999;59:929–937.
  • Hesse CW, James CJ. Tracking and detection of epileptiform activity in multichannel ictal EEG using signal subspace correlation of seizure source scalp topographies. Med Bio Eng Comput. 2007;45:909–916.
  • Ossadtchi A, Baillet S, Mosher JC, et al. Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering. Clin Neurophysiol. 2004;115:508–522.
  • Kobayashi K, James CJ, Nakahori T, et al. Isolation of epileptiform discharges from unaveraged EEG by independent component analysis. Clin Neurophysiol. 1999;110:1755–1763.
  • Kobayashi K, Akiyama T, Nakahori T, et al. Systematic source estimation of spikes by a combination of independent component analysis and RAP-MUSIC: I: principles and simulation study. Clin Neurophysiol. 2002;113:713–724.
  • Kobayashi K, Akiyama T, Nakahori T, et al. Source estimation of spikes by a combination of independent component analysis and RAP-MUSIC. Int Congr Ser. 2002;1232:311–316.
  • Ozdamar O, Kalayci T. Detection of spikes with artificial neural networks using raw EEG. Comput Biomed Res. 1998;31:122–142.
  • Ko CW, Chung HW. Automatic spike detection via an artificial neural network using raw EEG data: effects of data preparation and implications in the limitations of online recognition. Clin Neurophysiol. 2000;111:477–481.
  • Gabor AJ, Seyal M. Automated interictal EEG spike detection using artificial neural networks. Electroencephalogr Clin Neurophysiol. 1992;83:271–280.
  • Acir N, Oztura I, Kuntalp M, et al. Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks. IEEE Trans Biomed Eng. 2005;52:30–40.
  • Pang CC, Upton AR, Shine G, et al. A comparison of algorithms for detection of spikes in the electroencephalogram. IEEE Trans Biomed Eng. 2003;50:521–526.
  • Liu HS, Zhang T, Yang FS. A multistage, multimethod approach for automatic detection and classification of epileptiform EEG. IEEE Trans Biomed Eng. 2002;49:1557–1566.
  • Sommer D, Golz M. Clustering of EEG-segments using hierarchical agglomerative methods and self-organizing maps. Proc. International Conference on Artificial Neural Networks, Heidelberg, Berlin; 2001. pp. 642–649.
  • Wahlberg P, Salomonsson G. Feature extraction and clustering of EEG epileptic spikes. Comput Biomed Res. 1996;29:382–394.
  • Wahlberg P, Lantz G. Methods for robust clustering of epileptic EEG spikes. IEEE Trans Biomed Eng. 2000;47:857–868.
  • Inan ZH, Kuntalp M. A study on fuzzy C-means clustering-based systems in automatic spike detection. Comput Biol Med. 2007;37:1160–1166.
  • Shen TW, Kuo X, Hsin YL. Ant K-Means Clustering Method on Epileptic Spike Detection, Proc. International Conference on Natural Computation, Tianjin; 2009. pp. 334–338.
  • Exarchos TP, Tzallas AT, Fotiadis DI, et al. EEG transient event detection and classification using association rules. IEEE Trans Inform Technol Biomed. 2006;10:451–457.
  • Glover JR, Raghaven N, Ktonas PY, et al. Context-based automated detection of epileptogenic sharp transients in the EEG: elimination of false positives. IEEE Trans Biomed Eng. 1989;36:519–527.
  • Dingle AA, Jones RD, Carroll GJ, et al. A multistage system to detect epileptiform activity in the EEG. IEEE Trans Biomed Eng. 1993;40:1260–1268.
  • Ozdamar O, Yaylali I, Jayaker P, et al. Multilevel neural network system for EEG spike detection, Proc. Annual IEEE International Symposium on Computer-Based Medical Systems, Baltimore; 1991. pp. 272–279.
  • Geethanjali P, Ray KK. A low-cost real-time research platform for EMG pattern recognition-based prosthetic hand. IEEE/ASME Trans Mechatron. 2015;20:1948–1955.
  • Guerrero-Mosquera C, Verleysen M, Vazquez AN. Dimensionality reduction for EEG classification using Mutual Information and SVM, Proc. IEEE International Workshop on Machine Learning for Signal Processing, Beijing, China; 2011, pp. 1–6.
  • Cang S, Partridge D. Feature ranking and best feature subset using mutual information. Neural Comput Appl. 2004;13:175–184.
  • Andrzejak RG, Widman G, Lehnertz K, et al. The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 2001;44:129–140.
  • Sharmila A, Geethanjali P. Detection of epileptic seizure from EEG signals based on feature ranking and best feature subset using mutual information estimation. J Med Imaging Hlth Inform. 2016;6:1815–1850.
  • Viglione SS, Walsh GO. Epileptic seizure prediction. Electroencephalogr Clin Neurophysiol. 1975;39:443.
  • Rogowski Z, Gath I, Bental E. On the prediction of epileptic seizures. Biol Cybern. 1981;42:9–15.
  • Gotman J, Ives JR, Gloor P, et al. Changes in interictal EEG spiking and seizure occurrence in humans. Epilepsia. 1982b;23:432–433.
  • Liu A, Hahn JS, Heldt GP, et al. Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr Clin Neurophysiol. 1992;82:30–37.
  • Mormann F, Kreuz T, Rieke C, et al. On the predictability of epileptic seizures. Clin Neurophysiol. 2005;116:569–587.
  • Van Drongelen W, Nayak S, Frim DM, et al. Seizure anticipation in pediatric epilepsy: use of Kolmogorov entropy. Pediatr Neurol. 2003;29:207–213.
  • McSharry PE, Smith LA, Tarassenko L. Comparison of predictability of epileptic seizures by a linear and a nonlinear method. IEEE Trans Biomed Eng. 2003;50:628–633.
  • Litt B, Esteller R, Echauz J, et al. Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron. 2001;30:51–64.
  • Maiwald T, Winterhalder M, Aschenbrenner- Scheibe R, et al. Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic. Phys D:Nonlinear Phenomena. 2004;194:357–368.
  • Gigola S, Ortiz F, Attellis CED, et al. Prediction of epileptic seizures using accumulated energy in a multi-resolution framework. J Neurosci Methods. 2004;138:107–111.
  • Altunay S, Telatar Z, Erogul O. Epileptic EEG detection using the linear prediction error energy. Expert Syst Appl. 2010;37:5661–5665.
  • Yuan Q, Zhou W, Liu Y, et al. Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav. 2012;24:415–421.
  • Zamir ZR. Detection of epileptic seizure in EEG signals using linear least squares preprocessing. Comput Methods Programs Biomed. 2016;133:95–109.
  • Jung T-P, Makeig S, McKeown MJ, et al. Imaging brain dynamics using independent component analysis. Proc IEEE. 2001;89:1107–1122.
  • Kannathal N, Acharya UR, Lim CM, et al. Characterization of EEG: a comparative study. Comput Methods Programs Biomed. 2005;80:17–23.
  • Ghosh-Dastidar S, Adeli H, Dadmehr N. Principal component analysis enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans Biomed Eng. 2008;55:512–518.
  • Subasi A, Gursoy MI. EEG Signal classification using PCA, ICA, LDA and support vector machine. Expert Syst Appl. 2010;37:8659–8686.
  • Rajendra Acharya U, Vinitha Sree S, Alvin APC, et al. Use of principal component analysis for automatic detection of epileptic EEG activities. Expert Syst Appl. 2012;39:9072–9078.
  • Polat K, Güneş S. Classification of epileptiform EEG using a hybrid systems based on decision tree classifier and fast fourier transform. Appl Math Comput. 2007;187:1017–1026.
  • Jahankhani P, Kodogiannis V, Revett K. EEG signal classification using wavelet feature extraction and neural networks. Proc. IEEE International Symposium on Modern Computing, Sofia; 2006. pp. 120–124.
  • Sadati N, Mohseni HR, Magshoudi A, Epileptic seizure detection using neural fuzzy networks, Proc. IEEE International Conference on Fuzzy Systems, Vancouver, Canada; 2006. pp. 596–600.
  • Subasi A. EEG Signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl. 2007;32:1084–1093.
  • Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl. 2009;36:2027–2036.
  • Kumar Y, Dewal ML, Anand RS. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Sivip. 2014;8:1323–1334.
  • Kumar Y, Dewal ML, Anand RS. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing. 2014;133:271–279.
  • Li M, Chen W, Zhang T. Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM. Biocybern Biomed Eng. 2016;36:708–718.
  • Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods. 2003;123:69–87.
  • Hassanpour H, Mesbah M, Boashash B. Time-frequency based new born EEG seizure detection using low and high frequency signatures. Physiol Meas. 2004;25:935–944.
  • Tzallas AT, Tsipouras MG, Fotiadis DI. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci. 2007;2007:1.
  • Tzallas AT, Tsipouras MG, Fotiadis DI. Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inform Technol Biomed. 2009;13:703–710.
  • Tzallas AT, Tsipouras MG, Fotiadis DI. The use of time-frequency distributions for epileptic seizure detection in EEG recordings. Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France; 2007. pp. 3–6.
  • Khlif MS, Mesbah M, Boashash B, et al. Multichannel-based newborn EEG seizure detection using time-frequency matched filter, Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France; 2007, pp. 1265–1268.
  • Musselman M, Djurdjanovic D. Time frequency distributions in the classification of methods for seizure detection and prediction: an overview epilepsy from EEG signals. Expert Syst Appl. 2012;39:11413–11422.
  • Chen G. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst Appl. 2014;41:2391–2394.
  • Chua KC, Chandran V, Acharya UR, et al. Application of higher order spectra to identify epileptic EEG. J Med Syst. 2011;35:1563–1571.
  • Acharya UR, Vinitha Sree S, Suri JS. Automatic detection of epileptic EEG signals using higher order cumulant features. Int J Neural Syst. 2011;21:403–414.
  • Acharya UR, Vinitha Sree S, Chattopadhyay S, et al. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int J Neural Syst. 2011;21:199–211.
  • Kannathal N, Lim CM, Acharya UR, et al. Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed. 2005;80:187–194.
  • Acharya UR, Molinari F, Vinitha Sree S, et al. Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control. 2012;7:401–408.
  • Nicolaou N, Georgiou J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst Appl. 2012;39:202–209.
  • Oweis RJ, Abdulhay EW. Seizure classification in EEG signals utilizing Hilbert–Huang transform. Biomed Eng Online. 2011;10:38.
  • Martis RJ, Acharya UR, Tan JH, et al. Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals. Int J Neur Syst. 2012;22:1250027.
  • Sharma R, Pachori RB. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst Appl. 2015;42:1106–1117.
  • Sharmila A, Geethanjali P. DWT based epileptic seizure detection from EEG signals using Naïve Bayes/k-NN classifiers. IEEE Access. 2016;4:7716–7727.
  • Lee SH, Lim JS. Minimum feature selection for epileptic seizure classification using wavelet-based feature extraction and a fuzzy neural network. Appl Math Inf Sci. 2014;8:1295–1300.
  • Guo L, Rivero D, Dorado J, et al. Automatic epileptic seizure detection in EEG based on line length feature and artificial neural network. J Neurosci Methods. 2010;191:101–109.
  • Lima CA, Coelho AL, Eisencraft M. Tackling EEG signal classification with least squares support vector machines: a sensitivity analysis study. Comput Biol Med. 2010;40:705–714.
  • Wang D, Miao D, Xie C. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl. 2011;38:14314–14320.
  • Omerhodzic I, Avdakovic S, Nuhanovic A, et al. Energy distribution of EEG signals: EEG signal wavelet-neural network classifier. arXiv Preprint arXiv. 2013;1307.7897.
  • Ahammad N, Fathima T, Joseph P. Detection of epileptic seizure event and onset using EEG. BioMed Res Int. 2014;2014:1.
  • Chen D, Wan S, Bao FS. Epileptic focus localization using EEG based on discrete wavelet transform through full-level decomposition. Proc. IEEE International Workshop on In Machine Learning for Signal Processing, Boston, USA; 2015. pp. 1–6.
  • Aschenbrenner-Scheibe R, Maiwald T, Winterhalder M, et al. How well can epileptic seizures be predicted? An evaluation of a nonlinear method. Brain. 2003;126:2616–2626.
  • Acharya UR, Sree SV, Ang PCA, et al. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neur Syst. 2012;22:1250002.
  • Faust O, Bairy MG. Nonlinear analysis of physiological signals: a review. J Mech Med Biol. 2012;12:1240015.
  • Martis RJ, Acharya UR, Lim CM, et al. Application of higher order cumulant features for cardiac health diagnosis using ECG signals. Int J Neur Syst. 2013;23:1350014.
  • Selesnick IW, Baraniuk RG, Kingsbury NC. The dual-tree complex wavelet transform. IEEE Signal Process Mag. 2005;22:123–151.
  • Guo L, Rivero D, Dorado J, et al. Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst Appl. 2011;38:10425–10436.
  • Pijn JP, Van Neerven J, Noest A, et al. Chaos or noise in EEG signals; dependence on state and brain site. Electroencephalogr Clin Neurophysiol. 1991;79:371–381.
  • Pijn JPM, Velis DN, Heyden MJ, et al. Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings. Brain Topogr. 1997;9:249–270.
  • Jing H, Takigawa M. Topographic analysis of dimension estimates of EEG and filtered rhythms in epileptic patients with complex partial seizures. Biol Cybern. 2000;83:391–397.
  • Paivinen N, Lammi S, Pitkanen A, et al. Epileptic seizure detection: a nonlinear viewpoint. Comput Methods Programs Biomed. 2005;79:151–159.
  • Bai D, Qiu T, Li X. The sample entropy and its application in EEG based epilepsy detection. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = J Biomed Eng = Shengwu Yixue Gongchengxue Zazhi. 2007;24:200–205.
  • Temko A, Thomas E, Marnane W, et al. EEG-based neonatal seizure detection with support vector machines. Clin Neurophysiol. 2011;122:464–473.
  • Sakkalis V, Giannakakis G, Farmaki C, et al. Absence seizure epilepsy detection using linear and nonlinear EEG analysis methods. Proc. Annual International conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan; 2013, pp. 6333–6336.
  • Milosevic M, Van de Vel A, Cuppens K, et al. Feature selection methods for accelerometry-based seizure detection in children. Med Biol Eng Comput 2017;55:151–165
  • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw. 1994;5:537–550.
  • Mars NJI, van Arragon GW. Time delay estimation in non-linear systems using average amount of mutual information analysis. Signal Process. 1982;4:139–153.
  • Moddemeijer R. On estimation of entropy and mutual information of continuous distribution. Signal Process. 1989;16:233–246.
  • Moon YI, Rajagopalan B, Lall U. Estimation of mutual information using kernel density estimators. Phys Rev E. 1995;52:2318–2321.
  • Duch W, Wieczorek T, Biesiada J, et al. Comparison of feature ranking methods based on information entropy, Proc. IEEE International Joint Conference on Neural Networks, Budapest, Hungary; 2004, pp. 1415–1419.
  • Pohjalainen J, Rasanen O, Kadioglu S. Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput Speech Lang. 2015;29:145–171.
  • Sezer E, Işik H, Saracoğlu E. Employment and comparison of different artificial neural networks for epilepsy diagnosis from EEG signals. J Med Syst. 2012;36:347–362.
  • Song Y, Zhang J. Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction. Exp Sys Appl. 2013;40:5477–5489.
  • Lima CA, Coelho AL. Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study. Artif Intell Med. 2011;53:83–95.
  • Iscan Z, Dokur Z, Demiralp T. Classification of electroencephalogram signals with combined time and frequency features. Expert Syst Appl. 2011;38:10499–10505.
  • Subasi A, Ercelebi E. Classification of EEG signals using neural network and logistic regression. Comput Methods Programs Biomed. 2005;78:87–99.
  • Li D, Xu L, Goodman E, et al. Integrating a statistical background–foreground extraction algorithm and SVM classifier for pedestrian detection and tracking. ICA. 2013;20:201–216.
  • Pachori RB, Sharma R, Patidar S. Classification of normal and epileptic seizure EEG signals based on empirical mode decomposition. In: Zhu Q, Azar AT, editors. Complex system modelling and control through intelligent soft computations. Switzerland: Springer International Publishing; 2015. p. 367–388.
  • Xie S, Krishnan S. Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med Biol Eng Comput. 2013;51:49–60.
  • Nunes TM, Coelho ALV, Lima CAM, et al. EEG signal classification for epilepsy diagnosis via optimum path forest – a systematic assessment. Neurocomputing. 2014;136:103–123.
  • Meraoumia A, Chitroub S, Bouridane A. A 2D and 3D palmprint information, PCA and HMM for an improved person recognition performance. ICA. 2013;20:303–319.
  • Ahmadlou M, Adeli H. Enhanced probabilistic neural network with local decision circles: a robust classifier. ICA. 2010;17:197–210.
  • Guo L, Rivero D, Seoane J, et al. Classification of EEG signals using relative wavelet energy and artificial neural networks, Proc. ACM/SIGEVO, Summiton Genetic and Evolutionary Computation, New York, USA; 2009, pp. 177–184.
  • Srinivasan V, Eswaran C, Sriraam N. Artificial neural network based epileptic detection using time frequency domain features. J Med Syst. 2005;29:647–660.
  • Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Biomed Eng. 2007;11:288–295.
  • NigamVP, Graupe D. A neural network based detection of epilepsy. Neurol Research 2004;26:55–60.
  • Liang SF, Wang HC, Chang WL. Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J Adv Signal Process, 2010:1.
  • Wongsawat Y. Epileptic seizure detection in EEG recordings using phase congruency. Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. IEEE, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.