227
Views
6
CrossRef citations to date
0
Altmetric
Articles

Structure and motion design of a mock circulatory test rig

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 443-452 | Received 28 Aug 2018, Accepted 28 Oct 2018, Published online: 30 Nov 2018

References

  • Leefe SE, Gentle CR. A review of the in vitro evaluation of conduit-mounted cardiac valve prostheses. Med Eng Phys. 1995;17:497–506.
  • Sharp MK, Dharmalingham RK. Development of a hydraulic model of the human systemic circulation. ASAIO J. 1999;45:535–540.
  • Boes S, Ochsner G, Amacher R, et al. Control of the fluid viscosity in a mock circulation. Artif Organs. 2018;42:68–77.
  • Heise M, Krüger U, Rückert R, et al. Correlation of intimal hyperplasia development and shear stress distribution at the distal end-side-anastomosis, in vitro study using particle image velocimetry. Eur J Vasc Endovasc Surg. 2003;26:357–366.
  • Kaufmann TAS, Wong KC, Schmitz, et al. Mimicking of cerebral autoregulation by flow-dependent cerebrovascular resistance: a feasibility study. Artif Organs. 2012;36:E97.
  • May-Newman K, Vu V, Herold B. Modeling the link between left ventricular flow and thromboembolic risk using Lagrangian Coherent Structures. Fluids. 2016;1:38.
  • McKenzie SC, Dunster K, Chan W, et al. Reliability of thermodilution derived cardiac output with different operator characteristics. J Clin Monit Comput. 2018;32:227–234.
  • Misgeld BJE, Werner J, Hexamer M. Robust and self-tuning blood flow control during extracorporeal circulation in the presence of system parameter uncertainties. Med Biol Eng Comput. 2005;43:589–598.
  • Ninomiya S, Tokaji M, Tokumine A, et al. Virtual patient simulator for the perfusion resource management drill. J Extra Corpor Technol. 2009;41:206–212.
  • Piatti F, Palumbo MC, Consolo F, et al. Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: a pilot study on a real oxygenator/heat-exchanger module. J Biomech. 2018;68:14–23.
  • Seong J, Jeong W, Smith N, et al. Hemodynamic effects of long-term morphological changes in the human carotid sinus. J Biomech. 2015;48:956–962.
  • Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Rev Espanola Cardiol Engl Ed. 2017;70:282–291.
  • Brücker C. Dual-camera DPIV for flow studies past artificial heart valves. Exp Fluids. 1997;22:496–506.
  • Crosby JR, DeCook KJ, Tran PL, et al. Physiological characterization of the SynCardia total artificial heart in a mock circulation system. Am Soc Artif Intern Organs. 2015;61:274–281.
  • Crosby JR, DeCook KJ, Tran PL, et al. A physical heart failure simulation system utilizing the total artificial heart and modified donovan mock circulation. Artif Organs. 2017;41:E52–E65.
  • Donovan FM. Design of a hydraulic analog of the circulatory system for evaluating artificial hearts. Biomater Med Devices Artif Organs. 1975;3:439–449.
  • Feng Z, Umezu M, Fujimoto T, et al. In vitro hydrodynamic characteristics among three bileaflet valves in the mitral position. Artif Organs. 2000;24:346–354.
  • Feng Z, Nakamura T, Fujimoto T, et al. In vitro investigation of opening behavior and hydrodynamics of bileaflet valves in the mitral position. Artif Organs. 2002;26:32–39.
  • Förster F, Kaufmann R, Reul H, et al. A small pulsatile blood pump for ventricular support during end-stage heart failure. Artif Organs. 2000;24:373–376.
  • Geier A, Kunert A, Albrecht G, et al. Influence of cannulation site on carotid perfusion during extracorporeal membrane oxygenation in a compliant human aortic model. Ann Biomed Eng. 2017;45:2281–2297.
  • Giridharan GA, Koenig SC, Kennington J, et al. Performance evaluation of a pediatric viscous impeller pump for Fontan cavopulmonary assist. J Thorac Cardiovasc Surg. 2013;145:249–257.
  • Gregory SD, Schummy E, Pearcy M, et al. A compliant, banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices. Artif Organs. 2015;39:102.
  • Horvath D, Byram N, Karimov JH, et al. Mechanism of self-regulation and in vivo performance of the cleveland clinic continuous-flow total artificial heart. Artif Organs. 2017;41:411–417.
  • König CS, Clark C. Flow mixing and fluid residence times in a model of a ventricular assist device. Med Eng Phys. 2001;23:99–110.
  • Lim E, Dokos S, Salamonsen RF, et al. Effect of parameter variations on the hemodynamic response under rotary blood pump assistance. Artif Organs. 2012;36:E125.
  • Mansouri M, Gregory SD, Salamonsen RF, et al. Preload-based Starling-like control of rotary blood pumps: an in-vitro evaluation. PLoS ONE. 2017; 12:e0172393.
  • Morsi YS, Sakhaeimanesh A, Clayton BR. Hydrodynamic evaluation of three artificial aortic valve chambers. Artif Organs. 2000;24:57–63.
  • Ng BC, Kleinheyer M, Smith PA, et al. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility. PLoS ONE. 2018;13:e0195975.
  • Ng BC, Smith PA, Nestler F, et al. Application of adaptive starling-like controller to total artificial heart using dual rotary blood pumps. Ann Biomed Eng. 2017;45:567–579.
  • Nishida M, Asztalos B, Yamane T, et al. Flow visualization study to improve hemocompatibility of a centrifugal blood pump. Artif Organs. 1999;23:697–703.
  • Noor MR, Ho CH, Parker KH, et al. Investigation of the characteristics of HeartWare HVAD and Thoratec HeartMate II under steady and pulsatile flow conditions. Artif Organs. 2016;40:549–560.
  • Pauls JP, Stevens MC, Bartnikowski N, et al. In vitro comparison of active and passive physiological control systems for biventricular assist devices. Ann Biomed Eng. 2016;44:1370–1380.
  • Pauls JP, Stevens MC, Bartnikowski N, et al. Evaluation of physiological control systems for rotary left ventricular assist devices: an in vitro Study. Ann Biomed Eng. 2016;44:2377–2387.
  • Petrou A, Lee J, Dual S, et al. Standardized comparison of selected physiological controllers for rotary blood pumps: in vitro study. Artif Organs. 2018;42:E29–E42.
  • Schumer E, Höffler K, Kuehn C, et al. In-vitro evaluation of limitations and possibilities for the future use of intracorporeal gas exchangers placed in the upper lobe position. J Artif Organs. 2018;21:68–75.
  • Sénage T, Février D, Michel M, et al. A mock circulatory system to assess the performance of continuous-flow left ventricular assist devices (LVADs): does axial flow unload better than centrifugal LVAD? Am Soc Artif Intern Organs. 2014;60:140–147.
  • Stephens AF, Stevens MC, Gregory SD, et al. In vitro evaluation of an immediate response starling-like controller for dual rotary blood pumps. Artif Organs. 2017;41:911–922.
  • Wu EL, Nestler F, Kleinheyer M, et al. Pulmonary valve opening with two rotary left ventricular assist devices for biventricular support. Artif Organs. 2018;42:31–40.
  • Burton DA, Stokes K, Hall GM. Physiological effects of exercise. Contin Educ Anaesth Crit Care Pain. 2004;4:185.
  • Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia, PA: Saunders; 2005. 1152 p.
  • Levick RJ. An introduction to cardiovascular physiology 5E. 5th ed. London: CRC Press; 2009. 432 p.
  • Korakianitis T, Shi Y. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med Eng Phys. 2006;28:613–628.
  • Kotchen TA. Developing hypertension guidelines: an evolving process. Am J Hypertens. 2014;27:765–772.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.